Logo-jrhs
J Res Health Sci. 2016;16(1): 31-35.
PMID: 27061994
PMCID: PMC7189091
Scopus ID: 84962109809
  Abstract View: 262
  PDF Download: 168
  Full Text View: 186

Original Article

Applying Data Mining Techniques to Extract Hidden Patterns about Breast Cancer Survival in an Iranian Cohort Study

Hamid Reza Khalkhali, Hadi Lotfnezhad Afshar, Omid Esnaashari, Nasrollah Jabbari*
*Corresponding Author: Email: njabbarimp@gmail.com

Abstract

Background: Breast cancer survival has been analyzed by many standard data mining algorithms. A group of these algorithms belonged to the decision tree category. Ability of the decision tree algorithms in terms of visualizing and formulating of hidden patterns among study variables were main reasons to apply an algorithm from the decision tree category in the current study that has not studied already.

Methods: The classification and regression trees (CART) was applied to a breast cancer database contained information on569 patients in 2007-2010. The measurement of Gini impurity used for categorical target variables was utilized. The classification error that is a function of tree size was measured by 10-fold cross-validation experiments. The performance of created model was evaluated by the criteria as accuracy, sensitivity and specificity.

Results: The CART model produced a decision tree with 17 nodes, 9 of which were associated with a set of rules. The rules were meaningful clinically. They showed in the if-then format that Stage was the most important variable for predicting breast cancer survival. The scores of accuracy, sensitivity and specificity were: 80.3%, 93.5% and 53%, respectively.

Conclusions: The current study model as the first one created by the CART was able to extract useful hidden rules from a relatively small size dataset.

First Name
Last Name
Email Address
Comments
Security code


Abstract View: 263

Your browser does not support the canvas element.


PDF Download: 168

Your browser does not support the canvas element.


Full Text View: 186

Your browser does not support the canvas element.

Submitted: 12 Jan 2016
Revision: 30 Mar 2016
ePublished: 21 Mar 2016
EndNote EndNote

(Enw Format - Win & Mac)

BibTeX BibTeX

(Bib Format - Win & Mac)

Bookends Bookends

(Ris Format - Mac only)

EasyBib EasyBib

(Ris Format - Win & Mac)

Medlars Medlars

(Txt Format - Win & Mac)

Mendeley Web Mendeley Web
Mendeley Mendeley

(Ris Format - Win & Mac)

Papers Papers

(Ris Format - Win & Mac)

ProCite ProCite

(Ris Format - Win & Mac)

Reference Manager Reference Manager

(Ris Format - Win only)

Refworks Refworks

(Refworks Format - Win & Mac)

Zotero Zotero

(Ris Format - Firefox Plugin)