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 Background: Hepatitis B (HB) is a major global mortality. Accurately predicting the trend 
of the disease can provide an appropriate view to make health policy disease prevention. 
This paper aimed to apply three different methods predict monthly incidence rates of HB. 

Methods: This historical cohort study was conducted on the HB incidence data of 
Hamadan Province, the west of Iran, from 2004 to 2012. Weighted Markov Chain (WMC) 
method based on Markov chain theory and two time series models including Holt 
Exponential Smoothing (HES) and SARIMA were applied on the data. The results of 
different applied methods were compared to correct percentages of predicted incidence 
rates. 

Results: The monthly incidence rates were clustered into two clusters as state of Markov 
chain. The correct predicted percentage of the first and second clusters for WMC, HES and 
SARIMA methods was (100, 0), (84, 67) and (79, 47) respectively. 

Conclusions: The overall incidence rate of HBV is estimated to decrease over time. The 
comparison of results of the three models indicated that in respect to existing seasonality 
trend and non-stationarity, the HES had the most accurate prediction of the incidence 
rates. 
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Introduction 

epatitis B (HB) is one of the prevalent diseases in 

world and a major cause of morbidity and mortality
1
.
 

More than two billion people alive today have been 

infected with hepatitis B virus (HBV). Among Asian 

countries, Iran is considered as a country with a low 

endemicity. According to studies conducted in 2009, the 

prevalence of chronic HBV in general population of Iran was 

estimated about 1.7% 
2
. Furthermore, due to mass vaccination 

since 1993, prevalence of chronic hepatitis B infection has 

being decreased considerably. For example, in Hamadan 

Province, the west of Iran, the incidence rate was decreasing 

during 2004 to 2009 from 19.6 to 7.7 (per 100,000 

populations) 
3
. The high prevalence of infection could 

represent a failure of public health considering the 

availability and effectiveness of HBV immunization for all 

generation. Therefore, accurately forecasting the incidence 

rate could provide a measure to evaluate the public health 

programs and help to prevent and control the disease. 

Statistical methods are frequently used methods in 

epidemiological studies. The most frequently used methods 

in studying infectious disease such as HBV are regression 

models
4,5

 time series
6,7

multivariate analysis
8, 9

 and also 

machine learning methods
10,11

.  

Among statistical methods Markov chain process have 

appropriate properties to study the dynamic behavior of 

diseases
12-14

. Markov chains are an important class of 

stochastic processes in which a future state of an experiment 

depends only on the present one, not on proceeding states
13,14

. 

Markov chains and Markov processes are extensively applied 

in medical researches
13,15

 such as prediction of AIDs 

epidemic
16

. 

In 2010, Chen et al. proposed an approach according to 

weighted Markov chain to forecast and analysis the incidence 

of infectious diseases
17

. The proposed approach applies the 

sequential cluster method at incidence rates to determine the 

state space of Markov chain. Then, future incidence states 

would be predicted by using weighted Markov chain. In this 

approach, weights are standardized self-correlation 

coefficients of different orders. Their method successfully 

has been validated by existing incidents data of HBV in 

Jiangsu Province. They indicated that the proposed approach 

H 
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could overcome the difficulties of other methods such as 

dependency on historical data with a high accuracy 
17-19

. 

This study aimed to apply the Chen et al. 
17 

approach to 

predict monthly HBV incidence rates approach as a new 

method of prediction and compare the results with traditional 

methods such as HES and SARIMA models for predicting 

the incidence rates of HBV incidence in Hamadan Province, 

western Iran from 2004 to 2012.  

Methods 

We used the dataset of a historical cohort study, 

conducted on the HBV incidence in Hamadan Province, the 

west of Iran, from 2004 to 2012. The data were extracted 

from the database of the Vice-chancellor of Health Services, 

Hamadan University of Medical Sciences
 3

, Hamadan, Iran. 

In order to predict monthly incidence rates of HBV, two 

different approaches were applied including weighted 

Markov chain and time series models. The used time series 

models were Holts Exponential Smoothing and Seasonal 

ARIMA methods.  

Weighted Markov Chain Approach (WMC) 

This method, which was first proposed by Chen et al.
17

 is 

based on traditional Markov chain theory and the correlation 

analysis approach. This method includes the following steps. 

a) Clustering monthly incidence rates: The monthly 

incidence rates of HBV were partitioned into homogenous 

clusters using one-dimensional sequential cluster 

methods
17,20

. Then, the resulted clusters identify the Markov 

chain states so that the incidence rate of each month belongs 

to a certain state. 

b) Calculation of self-correlation coefficients   : 

2
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Where    is the k
th

 month self-correlation coefficient, xi ( 

i= 1,…,n) is the i
th

 monthly incidence rate,  ̅ and n are mean 

value of xi and the length of monthly incidence series, 

respectively. The weights are calculated by equation (2.1) 

where m is the maximum step according to prediction. i.e., 

k=1,…,m . 
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c) Computing transition probabilities matrices:  

The number of transition probability matrices is due to the 

number of determined clusters at the first step. The transition 

probability matrices,       i=1,…,k, where i is the number of 

transition steps and k is the number of clusters, are computed 

through the frequency of transitions from state to state. For 

example, the first array of the one-step transition matrix 

     is the frequency of transitions from state one to state one 

in one step. 

d) Calculating the predicting probabilities: 

States predicting probabilities are computed using 

equation (2.3) where m indicates the number of months to 

forecast. 

   ∑   
 
     

          (2.3) 

e)  Predicting monthly incidence rates state: 

The predicted state of each month is determined 

according to the maximum of Pi’s calculated at previous step. 

Time series models 

A time series model is a stochastic process or a set of 

observations yt, that each observation is recorded at a specific 

time t 
21

. To inference such series, it is necessary to set up a 

hypothetical probability model to present the data and choose 

an appropriate model. Then, it is possible to estimate 

parameters, check for goodness of fit and understand the 

mechanism from which the series has been come 
22

. 

In respect of existing seasonal and stationary time series, 

different models could be conducted. In this paper, two 

different time series models, HES and Seasonal Auto 

Regressive Integrated Moving Average (SARIMA) were 

applied.  

An HES is a flexible time series method for short-term 

forecasts
23

. It updates the level and trend parameters in non-

seasonal series while assuming no assumption for error 

terms
24-26

. 

A SARIMA is classified as an ARIMA(p,d,q)(P,D,Q) 

model, where p, d and q are non-negative integer that refer to 

the order of the autoregressive, integrated and moving 

average parts of the ARIMA model respectively. In addition, 

P is the number of seasonal autoregressive term, D is the 

number of seasonal differences and Q indicates seasonal 

moving average term
22, 25

. Selecting the best SARIMA model 

was carried out using Akaike Information Criteria (AIC). 

Stationarity assumption was checked using Kwiatkowski–

Phillips–Schmidt–Shin (KPSS) test
22

. The statistical 

significant level was assumed as 0.05. 

Based on the results of study conducted by Chen et al
 17

, 

the results of WMC approach was evaluated by computing 

the correct predicted probability. In order to make the three 

methods comparable, we used the same evaluation method 

for time series models. 

All the analyses were done by R.3.1.0. software. 

Results 

The dataset included the HBV incidences from 2004 to 

2012. During the study period, 1992 subjects with HBV 

infection were diagnosed. The mean (SD) age of the patients 

was 40.51 (0.36) with ranged from one to 100 yr. A majority 

of patients (74.11%) was male and 73.35% were married. 

To predict monthly incidence rate of HBV infection 

during 2004-2012, weighted Markov chains method and time 

series models were applied. 

Weighted Markov chains method results 

According to the results of K-means approach, the 

standardized incidence rates were categorized into two 

groups. In order to be sure of the appropriateness of number 

of clusters, we used a hierarchical method entitled WARD s. 
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According to the results of this method, selecting two clusters 

was the best model. The first cluster included incidence rates 

from zero to 0.497 and the second cluster included the 

remaining higher incidence rates (0.501- 1).  

According to the number of determined clusters, WMC 

approach could be performed using two steps. The first and 

second order autocorrelation measures and corresponding 

weights were 0.20, 0.02 and 0.88, 0.12, respectively. Various 

transition probabilities according to the number of steps were 

constructed as follows. 

     [
          
          

]                           [
          
          

] 

The probability of correct incidence predictions of WMC 

approach is given in Table 1. 

HES and SARIMA models results 

After checking the seasonality and stationary 

assumptions, two time series models, HES and SARIMA 

(0,1,1) (1,0, 0) were fitted on the data. The best SARIMA 

model was carried out using Akaike Information Criteria 

(AIC). To perform HES method, the time series seasonality 

trend was removed by subtracting the seasonal component 

from observations. The estimates showed that the prediction 

of the current level and the slope of the trend were not highly 

affected by the recent observations. Figure 1 shows the 

smoothed plots and model equations of obtained time series, 

where k indicates number of steps. Accordingly, the overall 

incidence rate of HBV is estimated to decrease over time. 

The correct incidence prediction probabilities of three 

methods are shown in Table 1.  

Table 1: Correct prediction probabilities for standardized incidence rates 

Methods 

Correct prediction probability 

State 1 State 2 

Weighted  Markov Chain(WMC) 1.00 0.00 

Holt Exponential Smoothing (HES) 0.84 0.67 

Seasonal Auto Regressive Integrated 

Moving Average (SARIMA) 

0.79 0.47 

 

  
            

                              

                                

SARIMA(0,1,1)(1,0,0) 

Figure 1: Smoothed plots and model equations of Holt Exponential Smoothing (HES) and Seasonal Auto Regressive Integrated Moving Average (ARIMA 

(0,1,1) (1,0,0))- The red lines: fitted plots, The black lines: Observed plots) 

Discussion 

Among different statistical methods used in prediction of 

incidence rate, Markov chain models are rarely used. This 

study tried to apply WMC to predict the monthly incidence 

rates. Furthermore, different time series models according to 

the existing stationary and seasonality assumptions were 

fitted.  

Before applying the methods, incidence rates were 

classified into two clusters. Most of the incidences were 

classified in cluster one which includes the lower incidences. 

In WMC method, the transitions enounced that the 

probability of state one to the same state transitions in one 

and two steps were 0.66 and 0.64, respectively. Therefore, it 

was expected that the monthly-predicted incidence rates 

would belong mostly to the first cluster rather than the second 

one. The WMC results showed that all incidence rates were 

predicted in cluster one. To study these results the 

homogeneity of chain were checked.  

The trend of incidence rates illustrated a decreasing trend 

from 2004 to 2009 and slight increase from 2010 to 2012. In 

addition, KPSS test resulted in non-stationary of the chain 

(P<0.05). Therefore, the time series models, which consider 

the non-stationary chains, were applied. In respect to existing 

seasonality trend in the time series, a SARIMA model was 

applied. The correct prediction percentage for clusters one 

and two according to the model were 0.79 and 0.47, 

respectively. After removing seasonality from the dataset, the 

HES model was performed. Compared to SARIMA results, 

an outperformance was found by applying HES where 84% 

and 67% of incidence rates were correctly predicted in the 

first and second clusters, respectively.  

Based on the correct predicted probabilities resulted for 

the three methods, the HES model had the greatest correct 

predicted probabilities followed by SARIMA and then 

WMC. 

The main advantage of WMC is that it is less dependent 

on historical data, thanks to scientific classification 

determining the initial states and transition probabilities. 

Although WMC is an appropriate dynamic model for 

incidence predictions of infectious diseases, its efficiency 

strongly depends on stationarity of the time series
17, 27. 

In 

contrast, time series model predictions strongly depend on 

historical data 
17

. HES, as well as SARIMA allows all the 

observations to be contributed in prediction process.   

The main limitation of this study was the short duration of 

follow-up time whereas, Markov chain approach has a good 

performance when the duration of time is long enough. In 
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short duration of follow up, the increase and decline in the 

historical data will not be fully reflected. 

Conclusions 

The overall incidence rate of HBV is estimated to 

decrease over time. The comparison of results of the three 

models indicated that in respect to existing seasonality trend 

and non-stationarity, the HES had the most accurate 

prediction of the incidence rates. 
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