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 Background: Determining the epidemic threshold parameter helps health providers calculate the 
coverage while guiding them in planning the process of vaccination strategy. Since the trend and 
mechanism of influenza is very similar in different countries, we planned a study with the mentioned goal 
by using data of US from 2017 to 2018.  

Study design: A secondary study. 

Methods: R0 and corresponding vaccination coverage are estimated using the national and state-level 
data of the US from the 40th in 2017 to the 5th week in 2018. Four methods maximum likelihood (ML), 
exponential growth (EG), time-dependent reproduction numbers (TD), and sequential Bayesian (SB) are 
used to calculate minimum vaccination coverage. The gamma distribution is considered as the distribution 
and the generation of time. 

Results: The peak of epidemy in most states has occurred in the 15th week after the beginning of the 
epidemics. The generation time obey the Gamma distribution with mean and standard deviation of 3.6 
and 1.6, respectively, was utilized for the generation time. The R0 (vaccination coverage) equaled 1.94 
(48.4%), 1.80 (44.4%), 3.06 (67.3%), and 2.11 (52.6%) for EG, ML, SB, and TD methods at the national 
level, respectively. 

Conclusion: The R0 estimations were in the range of 1.8-3.06, indicating that an epidemic has occurred 
in the US (R0>1). Thus, it is required to vaccinate at least 44.4% to 67.3% to prevent the next epidemics 
of influenza. The findings of this study assist futures studies to apply disease control by vaccination 
strategies in order to prevent a national disaster. 
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Introduction 

linical research and studies of communicable 

(infectious) diseases follow different purposes such as 

determining the trend, epidemic threshold parameters, 

and vaccination coverage. The epidemic threshold parameter, 

R0, plays a key role in the diagnosis of suggested control 

strategies in order to apply interventions or vaccination 

preventative strategies. In biostatistics and epidemiology, 

epidemic threshold parameter (whose special form is known 

as the basic reproduction number or reproductive ratio) 

defined as the mean number of secondary cases infected by 

initial cases in a fully susceptiblecommunity1-3. The basic 

reproduction number is generally compared with unity to 

assess the spread of infectious diseases to the population. An 

R0 greater than unity (R0>1) means an epidemic has occurred 

and each infected individual generates more than one new 

case4. In addition, the epidemic likely fades out when the basic 

reproduction number becomes less than unity (R0<1) and the 

R0 equals1, leading to an epidemic1-2, 5.  

Several approaches have been suggested to estimate R0. 

These include maximum likelihood (ML), exponential growth 

rate (EG), estimation of time-dependent reproduction numbers 

(TD), attack rate, gamma-distributed generation time, the final 

size of epidemic, and Richard model6-14. The type of approach 

depends on the type of data which is being studied (the type of 

household or daily incidence data). In each method, the basic 

reproduction numbers are reviewed to assess the intensity of 

interventions and vaccination strategies that can estimate the 

vaccination coverage of an infectious disease. Therefore, 

vaccination strategies are introduced in order to reduce and 

prevent the risk of transmission of infectious diseases in the 

target community. In addition, R0 and vaccination coverage 

have a direct impact on each other, which means that any 

variation in R0leads to a corresponding variation in vaccination 

coverage and vice versa. Therefore, a larger number of people 

should be vaccinated in a susceptible population where the 

estimation of basic reproduction number is a larger number. 

The estimation of the basic reproduction number (R0) has 

been addressed in various infectious diseases, including 

influenza, HIV, SARS, smallpox, malaria, yellow fever, 

measles, and Ebola15-22. In particular, influenza is a leading 

cause of mortality, with a considerable number of annual 

deaths in the world 23. Several influenza epidemics have 

occurred worldwide from 2009 to 2017 during which a 

substantial number of people died annually24. For example, the 

number of deaths caused by “Asian flu” and “Hong Kong flu” 

is estimated at at1 to 4 million25. On the other hand, the annual 
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deaths attributed to influenza are estimated at nearly 250,000 

to 500,000 globally26. Moreover, United States flu (pH1N1) 

killed about 12469 persons in 200927. 

An epidemic has recently occurred in the US. Of course, 

the epidemic of influenza has been recorded in the US every 

year over the past 20 years, showing a yearly seasonal threat 

of the influenza epidemic28 (Table 1). A few of these 

epidemics are listed below: 

In Philadelphia and New York (Sep 14 to Oct 17, 1918), 

the estimated R0 (95%CI) and generation time were 2.14 (1.88, 

2.39) and 2.5 d, respectively. The formula  used for estimating 

R0 was Rt = ∑ IRt+iwii>0
29. In the USA (1972-2002) reported 

the R0 (95% CI) of 1.30 (1.20, 1.40) with generation time of 

5.5 d and formula R0 = β (γ + δ)⁄ 30. Yang et al. estimated R0 

of influenza using epidemiological surveys and mathematical 

modeling approaches in two periods of 2003-2004 and 2012-

2013 are taken into account generation time of 4.2 and 4.8 

respectively. The R0 (95% CI) in this study were estimated 

2.04 (1.84, 2.21) and 1.97 (1.84, 2.21)31. The estimated R0 in 

the year 2009 (Mar 28- Mar 04) using likelihood-based method 

had a range 2.50 to 3.48 with corresponding 95% CI (1.80, 

2.16) and (1.84, 2.13)32. 

Table 1: R0 estimation by different methods for USA data (2017-18)  

Variables 

Method  

Exponential 

 Growth (EG) 

Maximum 

Likelihood (ML) 

Sequential  

Bayesian (SB) 

Time 

 Dependent (TD) 

At the national level     

R0 (95% CI) 1.93 (1.93, 1.94) 1.80(1.78, 1.80) 3.05 (3.03, 3.08) 2.11 (2.10, 2.12) 

Vaccination Coverage (%) 48.4 44.4 67.3 52.6 

Among 52 states     

Var (95% CI) 0.04 (0.03, 0.07) 0.03 (0.02, 0.05) 0.02 (0.01, 0.03) 0.04 (0.03, 0.06) 

 

The R0s reported above have been obtained using different 

methods and generation times and are, therefore, impossible to 

be compared. Therefore, another aim of the present study was 

to calculate the R0 of influenza for a given set of data (USA 

data) considering the same distribution for generation time by 

different methods to be able to compare various approaches. 

The number of cases and generation time distribution is needed 

which is gamma distribution with mean and SD 3.6 and 1.6 

respectively based on similar study. 

In addition, determine the epidemic threshold, helps health 

providers calculate the coverage while guiding them in 

planning the process of vaccination strategy. Vaccination 

coverage is directly computed by R0, called indirect effect/herd 

protection33. Indirect vaccination coverage is not only 

economic but also prevent epidemic which its effect exceed 

the direct effect34. 

Since the trend of influenza is very similar in different 

years, we conducted this study to determine the epidemic 

threshold parameters and, consequently, the vaccination 

coverage in the US from 2017 to 2018. 

Methods 

Statistical Analysis 

In the first step, the classic SIR (susceptible, 

infected/infectious, and removal) compartmental model used 

to describe the process of influenza was implemented to 

determine the protocol of the person transmission indifferent 

states. 

Next, four methods were developed to estimate the R0 

based on cumulative case count data 

in R statistical software (version 3.4.2) with 

R0 packages, including ML, EG, sequential Bayesian method 

(SB),and TD. All the methods were used in different papers 

for influenza data, so for this type of data all the methods could 

be used to estimate the R0.  

It is necessary to have a distribution for the generation time 

in each method defined below. Moreover, a brief overview of 

each method is presented. 

Generation time 

The length of time between infection in a primary infection 

and a secondary infection is defined as generation time or 

serial interval35. 

EG: The R0 formula in the exponential growth rate method 

isμt = R(∑ Nt−iwi
t
i=1 ) where R =

1

M(−r)
. Here, "r", "M", and 

Nt demonstrate the growth rate of the infection population, the 

moment generating function of the generation time 

distribution, and cases over a consecutive time unit, 

respectively, and parameter "w" represents the generation 

time. In order to estimate the growth rate parameter, Poisson 

regression method is applied7. 

ML: In this method, the distribution of secondary cases 

infected by primary cases assume Poisson with mean R. 

Suppose  N0, N1, … , NT represent cases over time and 

parameter w shows generation time. Then, the log-likelihood 

function based on Poisson distribution is as follows: 

LL(R) = ∑
exp (−μt)μt

Nt

Nt!

T

t=1

 

μt = R ∑ Nt−iwi

t

i=1

 

The maximum of log-likelihood function gives the 

reproduction number (R)36. 

SB: Suppose N(t+1) denotes incidence in time (t+1) for the 

SIR model where we have an approximate Poisson distribution 

with mean N(t)eγ(R−1) (ϒ shows the average generation time). 

A non-informative prior for R is used in the Bayesian 

framework. The posterior distribution of R in the previous day 

is applied as the prior distribution for R in the new day. The 

posterior distribution for R is as follows: 

𝑃(𝑅|𝑁0, … , 𝑁𝑡+1) =
𝑃(𝑁𝑡+1|𝑅, 𝑁0, … , 𝑁𝑡)𝑃(𝑁0, … , 𝑁𝑡)

𝑃(𝑁0, … , 𝑁𝑡)
 

The exponential distribution applies for generation time in 

this method 11. 
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TD: R0 can be estimated by TD with formula Rt =
1

Nt
∑ Rj{tj=t}  where Rj = ∑ pii  and pij =

Niw(ti−tj)

∑ Niw(ti−tk)i≠k
. In this 

formula, Pij demonstrates the probability of infection 

transmission form casei (in time ti) to case j (in time tj). Rt is 

the mean of all Rjcomputed by all networks of observed cases6. 

Vaccination coverage 

To compute the percent of vaccination coverage, we need 

to estimate R0. Therefore, the critical vaccination coverage, i.e. 

the proportion of people who receive vaccines, is obtained by 

the reproduction number using the following formula: 

𝑣 = 1 −
1

𝑅0

 

Vaccination coverage is also defined as the reduction in the 

probability of infection risk which is a value between 0 and 

133. 

Vaccine efficacy for reducing transmission can be 

achieved by 𝜗 =
𝑅0−1

𝑅0−𝑅1
=

1−1/𝑅0

1−𝑎𝑏
 that a and b represents 

susceptibility effect and infectivity effect respectively37. 

Data 

The four above-mentioned models were fitted to the US 

2017-18 pH1N1 data, applying FluView weekly report 

achieved from the Centers for Disease Control and Prevention 

(CDC) website 38. The data of Surveillance Network (ILINet) 

were implemented, reporting influenza cases in all 47 states, 

the District of Columbia, New Dakota, New York City, Puerto 

Rico, and the U.S. Virgin Islands for each age group in the 40th 

week in 2017 to 5th week in 2018. 

For all states, we estimated the R0 based on four methods. 

Afterward, we calculated the variances of R0s for each method 

to check for variability among different states, and then 

hierarchical cluster analysis was applied as an explorative 

technique to specify the number of clusters in the K-means 

clustering method to cluster the states. Cluster analysis was 

performed in Minitab 17 statistical software (Minitab Inc., 

State College, PA) and IBM SPSS Statistics 22 (Chicago, IL, 

USA).  

Results 

The incidence data are presented on a weekly basis and all 

dates of USA data are based on week/year from the 40th week 

in 2017 to the 5th week in 2018. The peak of epidemy in most 

states has occurred in the 15th week after start of the epidemics. 

The number of infected cases at the national level is provided 

in Figure 1.  

 

Figure 1: The incidence case count data of USA during 2017-18 (national-

level) 

The number of infected cases was plotted at the national 

level in five age groups. Maximum numbers of cases were in 

the age group of 5 to 24 yr and the peak incidence of influenza 

in this category occurred in the 19th week (Figure 2). 

 
Figure 2: The incidence case count data of USA during 2017-18 (national-level) based on age group 

 

The gamma distribution with the mean of 3.6 d and 

standard deviation of 1.6 d has been used as the distribution of 

the generation time 1. The results will be presented in three 

parts: national level, state level, and comparison of methods. 

National level 

The national R0 and vaccination coverage are summarized 

in Table 1 based on four methods (ML, EG, SB, and TD) while 

assuming a wholly susceptible population before the start of 

the epidemy. 

At the national level, the highest value of R0 was attributed 

to SB. Indeed, the estimated R0 at the national level by SB was 

quite different compared to other methods (3.057 95% CI: 

3.037, 3.08). Moreover, the estimated R0s for EG, ML, and TD 

were 1.939 (1.937, 1.940), 1.80 (1.789, 1.802), and 2.111 

(2.102, 2.120), respectively. 
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In addition, the estimates of vaccination coverage varied 

for the four methods, from 44.4% to 67.3%. The lowest and 

highest vaccination coverage values in this setting were 

associated with and SB methods, respectively (Table1).  

States Level 

The computed R0s (95% CI) and vaccination coverage for 

all states by EG, ML, SB, and TD are summarized in Table 1 

in the appendix. In general, the estimates of R0 at state level 

ranged from 1.55 to 2.79 for EG, 1.48 to 2.65 for ML, 1.62 to 

2.46 for SB, and 1.67 to 2.73 for TD. 

For each method, the variance of R0among states was 

calculated and the equality of variance with zero was tested by 

the chi-squared test (Table 1). The results for all methods 

indicated a variation in R0s among states because the reported 

confidence intervals did not include zero. Therefore, the states 

can be clustered using cluster analysis. 

These 52 states were divided into two clusters based on 

hierarchical clustering. Next, the results were used for k-means 

clustering applying k=2. The first cluster included 12 states 

and the second one included 40 states. The overall results 

of the K-means cluster analysis are presented in Table 2. 

Table 2: The R0s (95% CI) and vaccination coverages of two clusters for all methods 

Variables Exponential Growth (EG) Maximum Likelihood (ML) Sequential Bayesian (SB) Time dependent (TD) 

Cluster1     

R0 (95% CI) 2.08 (2.07, 2.08) 1.85 (1.85, 1.86) 2.07 (2.02, 2.12) 2.24 (2.20, 2.28) 

Vaccination Coverage 0.52 0.46 0.52 0.55 

Cluster 2     

R0 (95% CI) 1.81 (1.81, 1.81) 1.67 (1.67, 1.67) 2.97 (2.95, 3.01) 1.98 (1.97, 1.99) 

Vaccination Coverage 0.45 0.40 0.66 0.49 

Cluster1:Delaware, Idaho, Iowa, Kansas, Kentucky, Missouri, New Dakota, New Mexico, Rhode Island, Tennessee, Utah, Washington 

Cluster2: Alabama, Alaska, Arizona, Arkansas, California, Colorado, Connecticut, District of Colombia, Georgia, Hawaii, Illinois, Louisiana, Maine, Maryland, 
Massachusetts, Michigan, Minnesota, Mississippi, Montana, Nebraska, Nevada, New Carolina, New Hampshire, New Jersey, New York, New York City, Ohio, 

Oklahoma, Oregon, Pennsylvania, Puerto Rico, South Carolina, South Dakota, Texas, Vermont, Virginia, West Virginia, Virgin Islands, Wisconsin, Wyoming

In the first cluster, the lowest value of R0 for EG and ML 

is related to Idaho (EG: 1.97 95% CI (1.92, 2.03), ML: 1.48 

95% CI(1.47, 1.50)). In addition, New Mexico had the 

minimum value of R0 for SB and TD (SB: 1.99 95% CI(1.90, 

2.09), TD: 2.16 95% CI (2.08, 2.23)). Besides, the highest R0 

was estimated for Delaware using EG, ML, andTD (EG: 

2.7995% CI (2.69, 2.89)), ML (2.6595% CI (2.52, 2.79)), and 

TD (2.73 95% CI (2.12, 3.35)), and for New Dakota using SB 

(2.46 95% CI (1.84, 2.97)). 

Overall, in the first cluster, the estimated R0 for EG, ML, 

SB, and TD equaled 2.082 95% CI(2.077, 2.088), 1.858 95% 

CI(1.850, 1.867), 2.077 95% CI(2.025, 2.127), and 2.244 95% 

CI (2.204, 2.283), respectively, where the minimum and 

maximum values of R0belonged to ML and TD, respectively. 

Except for ML, other methods yielded a vaccination coverage 

of more than 50%.  

In the second cluster, the R0s calculated by four methods 

had the minimum value for Arkansas. New Hampshire had the 

largest R0 for EG and ML. Moreover, the R0 was maximum in 

Oklahoma for SB and TD. In total, the estimated R0 (95% CI) 

in the second cluster equaled 1.818 (1.817, 1.819) for EG, 

1.676 (1.674, 1.678) for ML, 2.976 (2.956, 3.01) for SB, and 

1.986 (1.978, 1.994) for TD. More than 40% vaccination 

coverage is required for the states in the second cluster. 

Despite the low vaccination coverage percent determined 

in Arkansas, there were states where the vaccination coverage 

had a large calculated percent. Therefore, at the state level, the 

percentages of vaccination coverage calculated using EG, ML, 

SB, and TD were the lowest for Arkansas (EG: 35.5%, ML: 

32.4%, SB: 38.3%, and TD: 40.1%). Furthermore, the highest 

vaccination coverages (EG:64.1%, ML:62.3%, and 

TD:63.4%) were associated with Delaware. 

Comparison of methods 

Except for the national level, the R0 across all the states (in 

both clusters) had an approximately identical estimation for 

both SB and TD. In other words, the estimated R0 using SB 

were consistent with that calculated using TD. The R0s 

estimated by ML were slightly less than those estimated using 

EG. The variance (95% CI) of R0s among these four 

approaches equaled 0.32 (0.10, 4.51), indicating variability. 

Cluster analysis based on the mentioned methods resulted in 

two clusters. The first cluster included EG and ML, while the 

second cluster comprised SB and TD. This analysis confirmed 

the above findings. 

Discussion 

The simple SIR compartmental model is used as the 

transition model, indicating that the estimation of R0using ML, 

EG, SB, and TD varied in different states due to the difference 

in the number of infectious cases during the outbreak. The 

variability of R0 depends on many factors, including location, 

estimation method, generation time, and pandemic wave10, 39. 

The virus and network size are also influential factors in 

influenza transmission10. The peak value of outbreak was the 

same in most states. Moreover, a sharp peak was observed in 

the incidence of H1N1 at the national level (Figure1). 

We have found variation in the estimation of R0 using ML, 

EG, SB, and TD implemented by the "R0 package". A 

quantitative comparison of findings revealed that the 

estimations of R0 in SB are approximately close to those of 

TD. Besides, EG and ML yielded almost identical results, and 

cluster analysis based on the four methods confirmed this 

hypothesis. 

The estimated epidemic threshold values based on three 

methods (EG, ML, and TD) in the first cluster were higher than 

those of the second cluster. Consequently, states in the first 

cluster have a higher risk of epidemic and require more 

vaccination coverage. 

Generally, the R0associated with ILINet using four 

methods was greater than the one at the national level (winter 

of 2017) as well as state level (in both clusters), representing 

the epidemic of influenza. Therefore, it seems necessary to 

consider appropriate solutions to control, decrease, and 

prevent the epidemic or pandemic of influenza. An effective 

way to protect people from the attack rate of influenza is 

vaccination. Annual vaccination against seasonal influenza 
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provides protection in high-risk groups (elderly people, ill 

persons, pregnant woman, and children) and can also reduce 

mortality rate, the incidence of disease, exacerbations, 

hospitalizations, and costs. 

In determining vaccination coverage, R0 plays a key role 

because the estimation of vaccination coverage is affected by 

R0 (v=1-1/R0). In other words, the percentage of a community 

vaccinated against influenza can be represented in terms of R0. 

Vaccination coverage and R0directly impact each other, which 

means that, with an increase in R0, vaccination coverage 

increases, and vice versa. The present study also provides an 

estimate of vaccination coverage for both national and state 

levels, which is one of the strengths of this study. 

The R0 of influenza for USA ranged between 1.3 and 3.1 

from 1918 to 2013 using various methods 35-36, 38-39. In our 

study, similar values were obtained for R0. For example, at the 

national level, the R0wasestimated using four methods (ML, 

EG, SB, and TD) and their values were in the range of 1.8 to 

3.06, indicating that an epidemic occurred in USA (R0>1). 

Various studies have employed different methods and 

generation times to estimate the threshold of epidemics. Thus, 

it would be illogical to make such comparisons. In our study, 

the R0 of influenza for USA data considering the same 

distribution for the generation time in different methods so that 

various approaches can be compared, which is another 

strength of this study. 

A weakness of this study was that, although cluster 

analysis determined similar methods, there was no 

exact criterion for determining the best method. 

Conclusion 

The findings of our study can be used to improve policy-

making, health care, and public health not only in the USA but 

also in other parts of the world. These results can be extended 

to other countries with similar epidemics. As the transmission 

mechanism is the same, the influenced parameters of the 

disease should be the same. In other words, the epidemic of 

influenza is similar in all countries so, in our country by at least 

44.4% of vaccination can prevent the flu outbreak. Hence, 

awareness of the R0 of influenza as a highly infectious disease 

is helpful for futures studies to apply disease control through 

vaccination strategies in order to prevent a national disaster. 

Indirect vaccination coverage is not only economic but also 

prevent epidemic which its effect exceed the direct effect34. 

Influenza would become re-epidemic. Therefore, a more 

comprehensive study is needed to deal with this dangerous 

virus. 
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  Highlights 

 The R0 (vaccination coverage) equaled 1.94 (48.4%), 

1.80 (44.4%), 3.06 (67.3%), and 2.11 (52.6%) for EG, 

ML, SB, and TD methods at the national level, 

respectively. 

 The R0 estimations indicating that an epidemic has 

occurred in the US (R0>1).  

 It is required to vaccinate at least 44.4% to prevent the 

next epidemics of influenza in the US. 

 The estimated R0 using SB were consistent with those 

calculated using TD. 

References  

1. Bahrampour A. On Multi-type Branching Process in determining 

reproduction number under a markovian model movement. J Stat 

Theory Appl. 2005; 4(1): 57-66. 

2. Becker NG, Bahrampour A. Preventing epidemics with age-

specific vaccination schedules. Math Biosci. 1997; 142(2): 63-77. 

3. Farrington C, Kanaan M, Gay N. Estimation of the basic 

reproduction number for infectious diseases from age‐stratified 

serological survey data. Appl Stat. 2001; 50(3): 251-92. 

4. Khan A, Hassan M, Imran M. Estimating the basic reproduction 

number for single-strain dengue fever epidemics. Infect Dis 

Poverty. 2014; 3(1): 12-29. 

5. Safi MA, Garba SM. Global stability analysis of SEIR model with 

holling type II incidence function. Comput Math Methods Med. 

2012; 2012(2012): 1-8. 

6. Arruda AG, Alkhamis MA, VanderWaal K, Morrison RB, Perez 

AM. Estimation of time-dependent reproduction numbers for 

porcine reproductive and respiratory syndrome across different 

regions and production systems of the US. Front Vet Sci. 2017; 

4(46), 1-9. 

7. Blumberg S, Lloyd-Smith J. Comparing methods for estimating 

R0 from the size distribution of subcritical transmission chains. 

Epidemics. 2013; 5(3): 131-45. 

8. Chowell G, Nishiura H. Quantifying the transmission potential of 

pandemic influenza. Phys Life Rev. 2008; 5(1): 50-77. 

9. Griffin JT, Garske T, Ghani AC, Clarke PS. Joint estimation of 

the basic reproduction number and generation time parameters for 

infectious disease outbreaks. Biostatistics. 2010; 12(2): 303-12. 

10. Haghdoost A, Baneshi MR, Zolala F, Farvahari S, Safizadeh H. 

Estimation of basic reproductive number of Flu-like syndrome in 

a primary school in Iran. Int J Prev Med. 2012; 3(6): 408-13. 

11. Obadia T, Haneef R, Boëlle P-Y. The R0 package: a toolbox to 

estimate reproduction numbers for epidemic outbreaks. BMC 

Med Inform Decis Mak. 2012; 12(1): 147-56. 

12. Stadler T, Kouyos R, von Wyl V, Yerly S, Böni J, Bürgisser P, et 

al. Estimating the basic reproductive number from viral sequence 

data. Mol Biol Evol. 2011; 29(1): 347-57. 

13. Wallinga J, Lipsitch M. How generation intervals shape the 

relationship between growth rates and reproductive numbers. 

Proc R Soc Lond B Biol Sci. 2007; 274(1609): 599-604. 

14. Wang X-S, Wu J, Yang Y. Richards model revisited: Validation 

by and application to infection dynamics. J Theor Biol. 2012; 313 

(21): 12-19. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Journal+of+Statistical+Theory+and+Applications
https://www.ncbi.nlm.nih.gov/pubmed/?term=Journal+of+Statistical+Theory+and+Applications


6 / 6 R0 and vaccination coverage of influenza in the US (2017-18) 

 

JRHS 2018; 18(4): e00427 

15. Althaus CL. Estimating the reproduction number of Ebola virus 

(EBOV) during the 2014 outbreak in West Africa. PLoS Curr. 

2014; 6: 1-9. 

16. Chowell G, Castillo-Chavez C, Fenimore PW, Kribs-Zaleta CM, 

Arriola L, Hyman JM. Model parameters and outbreak control 

for SARS. Emerg Infect Dis. 2004; 10(7): 1258-63. 

17. Eichner M, Dietz K. Transmission potential of smallpox: 

estimates based on detailed data from an outbreak. Am J 

Epidemiol. 2003; 158(2): 110-7. 

18. Furushima D, Kawano S, Ohno Y, Kakehashi M. Estimation of 

the Basic Reproduction Number of Novel Influenza A (H1N1) 

pdm09 in Elementary Schools Using the SIR Model. Open Nurs 

J. 2017; 11: 64-72. 

19. Johansson MA, Arana-Vizcarrondo N, Biggerstaff BJ, Gallagher 

N, Marano N, Staples JE. Assessing the risk of international 

spread of yellow fever virus: a mathematical analysis of an urban 

outbreak in Asuncion, 2008. Am J Trop Med Hyg. 2012; 86(2): 

349-58. 

20. Nsubuga RN, White RG, Mayanja BN, Shafer LA. Estimation of 

the HIV basic reproduction number in rural South West Uganda: 

1991–2008. PloS One. 2014; 9(1): 1-9. 

21. Smith DL, McKenzie FE, Snow RW, Hay SI. Revisiting the basic 

reproductive number for malaria and its implications for malaria 

control. PLoS Biol. 2007;5(3):e42. 

22. Karami M, Zahraei SM, Sabouri A, Soltanshahi R, Biderafsh A, 

Piri N, et al. Documentation of Measles Elimination in Iran: 

Evidences from 2012 to 2014. J Res Health Sci. 2017; 17(3): 

e00387. 

23. Cheng PY, Palekar R, Azziz‐Baumgartner E, Iuliano D, Alencar 

AP, Bresee J, et al. Burden of influenza‐associated deaths in the 

Americas, 2002–2008. Influenza Other Respir Viruses. 2015; 

9(1): 13-21. 

24. Committee on Global Health and the Future of the United States. 

Global health and the future role of the United States.Washington 

DC: National Academies Press; 2017. 

25. Yamamoto T. Pandemic Control Measures. Asian Med J. 2013; 

56(1): 51-4. 

26. Clem A, Galwankar S. Seasonal influenza: waiting for the next 

pandemic. J Glob Infect Dis. 2009; 1(1): 51-6. 

27. Shrestha SS, Swerdlow DL, Borse RH, Prabhu VS, Finelli L, 

Atkins CY, et al. Estimating the burden of 2009 pandemic 

influenza A (H1N1) in the United States (April 2009–April 

2010). Clin Infect Dis. 2011; 52(suppl1): S75-82. 

28. Doshi P. Trends in recorded influenza mortality: United States, 

1900–2004. Am J Public Health. 2008; 98(5): 939-45. 

29. Goldstein E, Dushoff J, Ma J, Plotkin JB, Earn DJ, Lipsitch M. 

Reconstructing influenza incidence by deconvolution of daily 

mortality time series. Proc Natl Acad Sci USA. 2009; 106(51): 

21825-9. 

30. Chowell G, Miller M, Viboud C. Seasonal influenza in the United 

States, France, and Australia: transmission and prospects for 

control. Epidemiol Infect. 2008; 136(6): 852-64. 

31. Yang W, Lipsitch M, Shaman J. Inference of seasonal and 

pandemic influenza transmission dynamics. Proc Natl Acad Sci 

U S A. 2015; 112(9): 2723-8. 

32. White LF, Wallinga J, Finelli L, Reed C, Riley S, Lipsitch M, et 

al. Estimation of the reproductive number and the serial interval 

in early phase of the 2009 influenza A/H1N1 pandemic in the 

USA. Influenza Other Respir Viruses. 2009; 3(6): 267-76. 

33. Scherer A, McLean A. Mathematical models of vaccination. Br 

Med Bull. 2002; 62(1): 187-99. 

34. Eichner M, Schwehm M, Eichner L, Gerlier L. Direct and indirect 

effects of influenza vaccination. BMC Infect Dis. 2017; 17(1): 

308. 

35. Vink MA, Bootsma MCJ, Wallinga J. Serial intervals of 

respiratory infectious diseases: a systematic review and analysis. 

Am J Epidemiol. 2014; 180(9): 865-75. 

36. Fine P, Eames K, HeymannDL. “Herd immunity”: a rough guide. 

Clin Infect Dis. 2011;52(7): 911-16. 

37. Forsberg White L, Pagano M. A likelihood‐based method for 

real‐time estimation of the serial interval and reproductive 

number of an epidemic. Stat Med. 2008; 27(16): 2999-3016. 

38. CDC FluView Weekly Report. National Regional and State level 

outpatient illness and Viral Surveillance; 2018; Available from: 

https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html. 

39. Gumel AB, Nuño M, Chowell G. Mathematical assessment of 

Canada’s pandemic influenza preparedness plan. Can J Infect Dis 

Med Microbiol. 2008; 19(2): 185-92. 


