
Background
Thyroid nodules are frequent, and the majority of 
them are benign. This illness is responsible for 1% of all 
human malignancies.1 Its prevalence is around 50%-60% 
in the United States and 22.4% in Iran, representing a 
considerable increase over previous years. It is generally 
more prevalent in northern Iran, particularly in coastal 
and mountainous areas. The prevalence of thyroid 
nodules in the general population ranges from 19% 
to 68%, with 5%-10% of nodules being cancerous.1 
Therefore, the primary goal of diagnosing thyroid nodules 
is to differentiate malignant nodules from benign ones. 
Fine needle aspiration (FNA) is the gold standard for 

diagnosing this disease. However, about 15%-30% of 
FNA results are indeterminate cytological diagnoses.2,3 
To achieve a decisive interpretation in these cases, FNA 
is often repeated. Therefore, the risks that the patient 
poses due to repeated FNA (with potentially aggressive 
characteristics) for its uncertain result will also cause 
frustration and stress to the patient and impose additional 
medical costs.4 These problems are exacerbated when 
the patient's nodule is benign. A medical imaging-based 
screening approach utilized ahead of the FNA procedure 
can significantly assist thyroid nodule specialists. Using 
such a system alone is not sufficient for diagnosis; 
however, it substantially influences the diagnosis of 
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Abstract
Background: This study aims to show the impact of imbalanced data and the typical evaluation methods 
in developing and misleading assessments of machine learning-based models for preoperative thyroid 
nodules screening.
Study design: A retrospective study.
Methods: The ultrasonography features for 431 thyroid nodules cases were extracted from medical records 
of 313 patients in Babol, Iran. Since thyroid nodules are commonly benign, the relevant data are usually 
unbalanced in classes. It can lead to the bias of learning models toward the majority class. To solve it, a 
hybrid resampling method called the Smote-was used to creating balance data. Following that, the support 
vector classification (SVC) algorithm was trained by balance and unbalanced datasets as Models 2 and 3, 
respectively, in Python language programming. Their performance was then compared with the logistic 
regression model as Model 1 that fitted traditionally.
Results: The prevalence of malignant nodules was obtained at 14% (n = 61). In addition, 87% of the 
patients in this study were women. However, there was no difference in the prevalence of malignancy for 
gender. Furthermore, the accuracy, area under the curve, and geometric mean values were estimated at 
92.1%, 93.2%, and 76.8% for Model 1, 91.3%, 93%, and 77.6% for Model 2, and finally, 91%, 92.6% 
and 84.2% for Model 3, respectively. Similarly, the results identified Micro calcification, Taller than wide 
shape, as well as lack of ISO and hyperechogenicity features as the most effective malignant variables.
Conclusion: Paying attention to data challenges, such as data imbalances, and using proper criteria 
measures can improve the performance of machine learning models for preoperative thyroid nodules 
screening.
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remarkably benign thyroid nodules. Proper diagnosis of 
benign nodules reduces invasive FNA procedures for a 
wide range of healthy subjects, avoiding the potential side 
effects and expenses.

In the last few decades, some artificial intelligence (AI) 
algorithms, especially deep-learning and machine learning 
algorithms, have been developed for classification and 
prediction.5 These algorithms have had acceptable results 
in most fields, compared to other traditional methods. 
Machine learning models can be one of the most suitable 
methods to replace conventional methods since they do 
not impose any basic assumptions on data distribution. 
Moreover, they do not charge any restrictions on the 
functional form of the relationship between independent 
and dependent variables.6,7

This study pursued two main goals: the first was to 
examine the most widely used machine learning model 
in two ways that fitted with balanced and unbalanced 
data. The second was to investigate the impact of using 
the appropriate index to report the model's performance 
when encountering unbalanced data.

Methods
Data
This retrospective study was performed in Babol, Iran. 
The demographic and sonographic data for available 
patients were from patients' medical records between 
2019 and 2020. Inclusion criteria were patients with a 
diagnosis of thyroid nodule by FNA indication, 6-month 
follow-up, cytological results reported by the pathologist, 
full consent to participate in the study, and no specific 
cysts. On the other hand, patients with benign cytology 
without a 6-month follow-up and those whose results 
were unavailable after the FNA procedure were excluded 
from the study. All information collected for patients in 
this study was diagnosed and recorded by a radiologist 
with more than 10 years of expertise.

This study included two quantitative and nine 
categorized variables. For model development, the 
categorized variables were converted to dummy variables 
(A variable with n categories is transformed into n-1 
binary variables.) so that in all of them, according to 
Table 1, the first category was considered a reference (the 
first category is marked with a star symbol). The name of 
each category was regarded as a variable name. Finally, 16 
variables were prepared for model development.

The data collected in this field have been unbalanced 
in malignant and benign classes because most thyroid 
nodules are benign. Imbalance data can lead to models 
being misled towards the majority class. Accordingly, a 
combination resampling method called Smote-Tomek was 
used to solve this problem in this study.8-12 Smote-Tomek 
was created from a combination of Smote and Tomek 
methods. Unlike the random sampling method, the Smote 
algorithm, to increase the sample size in the minority 
class, prefers to build or simulate a new sample (using 
the K-nearest neighbors algorithm) rather than copy the 

existing samples in the minority class.13 This advantage 
minimizes overestimation in the model results, and it is 
the cause of using this combined method to balance the 
data. Imbalanced-Learn Package in Python was used to 
perform balancing methods.14

Models
Two classification methods were used, namely logistic 
regression (LR) 15 and support vector machines (SVM).16 
The reason for choosing the LR method is the widespread 
use and popularity of this statistical model for solving 
classification problems traditionally and also being one 
of the basic models of machine learning.17 Support vector 
machines called SVM are supervised learning algorithms 
that can be used for classification and regression problems 
as support vector classification (SVC) and support vector 
regression (SVR).18 SVC is a common type of classifier for 
high-dimensional data by constructing a multidimensional 
hyperplane to obtain the optimal solution for classification 
using statistical methods. Choosing the SVC is based on 
the most widely used statistical models for classifying 
thyroid problems that have a long history in this field.19,20 
Moreover, the first commercialized thyroid US system 
using AI was utilized in this model.21,22

Model development
In this study, three classification models were fitted in the 
following order:

Model 1: Multiple LR was fitted in the traditional way 
using SPSS software (version 25) and all data without 
cross-validation method.

Model 2: The SVC classifier uses original data (unbalance 
data) and the cross-validation method, randomly divided 
into two categories of training and testing to fit the model 
with a ratio of 70 to 30. Following that, training dataset 
was used to model learning, and the testing dataset was 
utilized to evaluate the model. It is worth mentioning that 
five random replications were used for cross-validation to 
prevent overfitting.23 

Model 3: SVC model using balanced data. 
Model fitting steps of this model are similar to Model 

2 with the difference that after dividing the dataset into 
training and testing, the training dataset was balanced 
using the Smote-Tomek algorithm and then used for 
model training. The process of Smote-Tomek is as follows:
1. (Start of Smote algorithm) For random sample xi ∈ 

minority class, compute the k nearest neighbor’s 
Euclidean distance.

2. Select a neighbor xj randomly from the k nearest 
neighbors of xi.

3. According to the following formula, it produces a 
new synthetic sample between xi and xj: δ ∈ [0, 1] is a 
random parameter

4. Repeat steps 1-3 until the desired proportion of the 
minority class is met. (End of Smote)

5. (Start of Tomek-Links) Choose random sample 
xj from the majority class. Euclidean distance 
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calculation for sample pair (xi, xj), where xi is related 
to the minority class.

6. Repeat the previous step until achieving the minimally 
Euclidean distanced neighbors for the sample pair (xi, 
xj) that is called Tomek-link.

7. Exclusion of x related to the majority class from the 
Tomek link. (End of Tomek)

Models 2 and 3 were implemented in Python 
programing language (version 3.7) using the scikit-learn 
package.24 Figure 1 depicts the steps of fitting Models 2 
and 3, with the difference that step 4, which is related to 

data balancing (resampling method), is not implemented 
in Model 2 but Model 3. 

Moreover, permutation-importance function from 
the Scikit-learn package24 was utilized to elicit weights of 
important variables in predicting Models 2 and 3 (shown 
in Figure 2). In this Figure, to distinguish between factors 
effective in predicting malignancy and benignity of 
thyroid nodules and for variables effective in predicting 
malignancy (positive class), weight is marked with a 
positive sign. On the other hand, for variables effective in 
predicting benign nodules, the weight is considered with 

Table 1. Descriptive information and the relationship between each of the variables in the study with the response variable (nodule type) based on Model 
1(multiple logistic regression)

Variables
Nodule’s type Model 1 Bivariate tests

Malignant Benign OR (CI 95%) P value P value

Continuous variables Mean (SD) Mean (SD)

Age 40.75 (13.63) 48.15 (12.00) 0.96 (0.93, 0.99) 0.034 0.001

Nodule size 14.80 (8.66) 20.65 (14.42) 0.99 (0.95, 1.03) 0.537 0.001

Categorized variables Number Number OR (CI 95%) P value P value

Gender

0.788Male 7 47 1.00

Female 54 323 0.59 (0.20, 1.79) 0.355

Location

0.184
Isthmus 1 13 1.00

Right lobe 26 196 0.69 (0.07, 7.20) 0.761

Left lobe 34 161 0.95 (0.09 ,9.90) 0.963

Echogenicity

0.001

Marked hypo 15 4 1.00

Hypo 35 96 0.40 (0.09, 1.87) 0.246

Iso 11 265 0.05 (0.01, 0.27) 0.001

Hyper 0 5 0.18 (0.02, 1.87) 0.999

Margin

0.001Smooth 46 365 1.00

Irregular or micro lobulated 15 5 0.84 (0.20, 3.55) 0.814

Calcification

0.001
No categorize 25 303 1.00

Micro calcifications 34 41 9.61 (4.03, 22.95) 0.001

Macro calcifications 2 26 1.06 (0.14, 7.90) 0.955

Nodule Shape  

0.001Wider than tall 33 359 1.00

Taller than wide 28 11 7.06 (2.34, 21.30) 0.001

Composition

0.006
Solid 60 305 1.00

Predominantly cystic 0 21 0.95 (0.17, 1.47) 0.998

Predominantly solid 1 44 0.25 (0.03, 2.10) 0.201

Vascularity

0.016No 41 298 1.00

Yes 20 71 2.76 (1.07, 7.15) 0.036

Lymphadenopathy (lnp)

0.001No 54 370 1.00

Yes 7 0 4.2 (1.04, 10.56) 0.999
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a negative sign.
Five measures of sensitivity, specificity, accuracy, area 

under the curve (AUC), and geometric mean (Gmean) 
were used to evaluate the models. Gmean- an index that 
balances the model's performance in the two majority and 
minority classes- is defined as follows25: 

Gmean Sensitivity Specificity= ×

Results
In this study, 551 nodules out of 408 patients were 
examined for inclusion in the study, of which 120 nodules 
were excluded from the study (Figure 3). Finally, 431 
nodules out of 313 patients were included in the study. 
Furthermore, the prevalence of malignant nodules was 
14% (n=61). The mean ages of patients with benign and 
malignant nodules were 48 and 40 years, respectively. 

Figure 1. Flowchart of fitted steps in Models 2 and 3 with the difference that Model 2 does not include step 4.

Figure 2. Feature importance for SVC models.

Figure 3. Patients included in the study.
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Moreover, 87% of the patients were women; however, 
there was no difference in the prevalence of malignancy 
between genders. Since the P value of the Kolmogorov-
Smirnov test violated the normal distribution (P<0.05) for 
variables of age and nodule size (response variable), the 
Mann-Whitney nonparametric test was used to investigate 
their relationship with nodule type. In addition, the 
chi-square test was utilized for the association between 
qualitative variables and nodule type (Table 1).

Model 1: This model included multiple LR model 
classification thyroid nodules with 60.6% sensitivity and 
97.2% specificity. The accuracy and Gmean in this model 
were 92.1% and 76.8%, respectively. The ROC curve for 
this model is shown in Figure 4, and the AUC for this 
model was 93±0.02%. The variables of age, echogenicity 
(ISO class), calcification (Micro class), nodule shape 
(Taller than wide class), and nodules with vascularity were 
statistically significant (0.034, <0.001, <0.001, 0.001, and 
0.036, respectively). The odds ratio (OR) for variables was 
shown in Table 1.

Model 2: In this model, the power for predicting 
malignant nodules sensitivity (63.3%), predictive power of 
benign nodules (specificity, 95.9%), overall model accuracy 
(91.3%), and value of Gmean (77.6%) were obtained. You 
can also see the ROC curve for this prediction model 
for five random repetitions in Figure 4. The AUC index 
for this model was 93±0.03%. The important variables 
in the prediction for this model are plotted in Figure 2. 
According to this chart, the existence of variables, nodule 
shape (taller than wide category), calcification (micro 
class) and in contrast, the absence of echogenicity variables 
(ISO and hyper classes) and composition (cystic), as well 

as the most effective variables in the diagnosis of thyroid 
nodule malignancy were identified.

Model 3: Sensitivity and specificity for this model were 
obtained at 76.1% and 93.8%, respectively. Furthermore, 
the model's efficiency in terms of accuracy, Gmean, and 
AUC were equal to 91.3%, 84.2%, and 92.6%, respectively. 
The ROC curve for this model is drawn in Figure 4. The 
important variables of the prediction in this model are 
plotted in Figure 2. According to this chart, the existence 
of variables, calcification (micro class), nodule shape 
(Taller than wide category), and in contrast, the absence 
of echogenicity variables (ISO and hyper classes) and 
composition(cystic), as well as the most effective variables 
in the diagnosis of thyroid nodule malignancy were 
identified. 

Table 2 shows the values of the evaluation indicators with 
a 95% confidence interval for all three models in the study. 

Discussion
The prevalence of malignant nodules in this study was 
obtained at 14%. The mean ages of patients with benign 
and malignant nodules were 48 and 40 years, respectively, 
which had a statistically significant difference. This 
study attempted to show the existing challenges and 
their effectiveness on statistical models' performance in 
classifying thyroid nodules, provide a solution for them, 
and develop a statistical model based on machine learning 
for screening thyroid nodules. 

Accuracy, AUC, and Gmean were utilized to evaluate 
the overall performance of models. Accuracy and AUC 
were almost similar, with the superior performance of 
Model 1 over the other two models. While according to 
Gmean, Model 1 shows the weakest performance and 
Model 3 offers the best performance. Now the question 
is whether the performance comparison of models should 
be based on which of the mentioned evaluation metrics?

According to practical and theoretical evidence, accuracy 
in imbalanced data is substantially skewed. When the bulk 
of data in a binary classification is negative, a shallow 
learning model can achieve high accuracy by classifying 
the negative class while having poor prediction for the 
positive class.26,27 As a result, using accuracy to evaluate 
models appears to be essentially worthless in our analysis.

AUC is a widely used assessment indicator for 
classification models that is calculated by measuring 
the area under the ROC curve. This index indicates the 
difference between true and false positives. Its value, Figure 4. ROC Curve for study models.

Table 2. The common evaluation indicators with a 95% confidence

Evaluation metrics
Model І Model П Model Ш

Scores 95% CI Scores 95% CI Scores 95% CI

Sensitivity 60.6 48.0, 73.0 63.3 53.3, 73.4 76.1 69.2, 83.0

Specificity 97.2 96.0, 99.0 95.9 94.2, 97.6 93.8 91.8, 95.9

Accuracy 92.1 89.4, 94.2 91.3 89.4, 93.4 91.0 89.8, 93.0

Area under the curve 93.2 92.7, 94.8 93.0 91.3, 94.7 92.6 91.0, 94.2

Gmean 76.8 70.2, 84.6 77.6 71.3, 83.9 84.2 80.7, 87.7
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however, is reliant on the ROC curve's threshold (each 
distinct threshold point generates a different value of 
the paired values (TP, FP). It will be ideal value when 
the optimal threshold point is found and established. 
Otherwise, the index will be biased when evaluating 
models fitted  by imbalanced  data.25,28-31 It is critical to 
understand that one method for determining the best 
threshold for ROC curve is to utilize the Gmean.26

The Gmean is the correct answer because, as previously 
stated, this index indicates the model's ability to predict 
both positive (malignancy) and negative (benign) classes 
to the greatest extent possible balance. A low Gmean value 
implies that the classification model is heavily skewed 
toward one class and not the other.25,28,32,33 Although 
Gmean minimizes the negative impact of skewed class 
distributions, it neither discerns the contribution of each 
class to the overall performance nor is it the dominant 
class. Different sensitivity (true positive rate) and 
specificity (true negative rate) combinations may produce 
the same result for those two metrics. Therefore, to check 
the performance of the models, it is necessary to use 
separate indicators for each class, such as sensitivity and 
specificity, along with overall measures for both classes.

To clarify this issue, we can compare the value of the 
three metrics against the difference between the sensitivity 
and specificity for each model. Sensitivity and specificity 
for Model 1 were equal to 60.6% and 97.2% (difference: 
36.6%), for Model 2 were equal to 63.3% and 95.9% 
(difference: 32.6%), and for Model 3 were equal to 76.1% 
and 93.8% (difference: 17.7%). The difference between 
the first two models is considerably greater than that in 
Model 3. This difference is typically more visible when 
the data used to build the model contains imbalanced 
classes, causing the model to bias toward the majority 
class (benign nodules). Since the value of specificity in 
these two models is substantially greater than the value 
of sensitivity, the value of accuracy and AUC metrics in 
these models is bigger than the value of the Gmean. These 
metrics are created in such a manner that they cannot 
be a good indicator of the model's ability to predict both 
classes,27 but the Gmean has overcome this issue and 
has been able to demonstrate the model's sensitivity and 
specificity concurrently.34 Meanwhile, unlike Models 2 
and 3, cross-validation-training and testing process were 
not used to evaluate Model 1. It was traditionally fitted 
and assessed with a single dataset, which could cause over 
fitting in the results of this model.23 However, Models 2 
and 3 have been evaluated in 5 replications using the test 
dataset. Finally, Model 3 was chosen as the top model 
based on the Gmean and the higher sensitivity than the 
other two models when comparing the models in overall 
performance (predictive power of both classes) as a 
consequence of the considerations above.

Most thyroid nodules are benign, and the imbalance 
data in this topic appears to be evident. However, a few 
researchers have focused on aspects listed in predicting 
malignant thyroid nodules. For example, Chen et al, 

Ouyang et al, and Prochazka et al all used machine 
learning algorithms to classify thyroid nodules.6,7,35 To 
evaluate the models, they have only reported the AUC or 
accuracy index and have not even reported the sensitivity 
and specificity. In contrast to the three studies mentioned, 
Ma et al utilized the Gmean index to report model 
performance in their research to identify thyroid nodules 
using SVM. In their study, the Gmean index, sensitivity, 
and specificity were found to be 90%, 93.8%, and 86.6%, 
respectively.36 Although their study data had imbalanced 
classes, it was not conducted to balance the data, as we did 
in our analysis.

Based on the best model in this study, we chose the 
most important variables in classifying thyroid nodules 
(Figure 2). Micro calcification is one of the categories 
of calcification, which is the most important predictor 
in the diagnosis of thyroid nodule malignancy based on 
the selected model. This feature is considered the second 
effective factor in diagnosing malignancy according to 
Model 2, and according to Model 1 is one of the features 
that has a significant effect on the prediction of malignant 
thyroid nodules. 

Taller than wide shape: This feature was the second 
most effective predictor of malignancy in terms of the 
selected model, the best predictor of malignancy in Model 
2, and one of the influential variables in Model 1. In some 
sources, Taller than wide shape has been introduced as the 
best predictor for malignant nodules. 

Lymphadenopathy: This characteristic was likewise 
established as one of the influential factors in the 
diagnosis of malignancy for all three models. However, 
due to the small number of samples having this feature 
in the research (7 samples), we skipped incorporating it 
in among the influential variables. Irregular speculated 
or micro lobulated margin has also proven effective 
in malignancy in Model 3. In all three models, ISO 
and hyperechogenicity play a key role in identifying 
benign nodules for classification. In some research, ISO 
echogenicity has been introduced as the best predictor 
for predicting benignity. Based on Models 3 and 2, 
having a predominantly cystic feature is also a sign of 
benign thyroid nodules. Taller than wide shape, micro 
calcifications, and irregular margins were reported as the 
most practical characteristics in predicting thyroid nodule 
malignancy in many investigations, including the meta-
analysis by Remonti et al.34,37-40

However, like most other research, this one includes 
limitations that might bias the findings. Due to a lack of 
resources, time, and access to a large data bank, ultrasound 
images could not be employed directly in this model. If 
this was feasible, we could deploy image processing to 
allow the model to extract hidden characteristics from 
the radiologist and use them to enhance the model's 
performance.

Conclusion
Our study results clearly show the trained model's 
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