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Abstract

Background: Stroke remains a global health challenge, with its burden disproportionately
affecting developing nations, including Iran. Rapid access to medical care is crucial for improving
outcomes. However, spatial and temporal factors often leads to delays, adversely impacting
survival. This study investigated predictors of in-hospital mortality among stroke patients in
Mashhad, Iran, with a novel focus on spatial directionality using circular statistical methods.
Study Design: A retrospective cohort study.

Methods: The data of 1,171 stroke patients transported to Ghaem Hospital (2018-2019) were
analyzed in this study. Pre-hospital delays, demographics, and clinical factors were assessed
alongside spatial directionality, represented by the bearing angle between patients’ residences and
the hospital. Circular logistic regression was used to model in-hospital mortality, incorporating
both linear and circular predictors.

Results: The in-hospital mortality rate was 14.3%. Independent predictors included age (OR:
1.03, 95% CI: 1.01-1.04), length of stay (OR: 1.02, 95% ClI: 1.01-1.04), triage level (OR: 2.31,
95% CI: 1.20-4.45), ambulance accessibility (OR: 0.97, 95% Cl: 0.96-0.99), and the sine of the
bearing angle (OR: 1.37, 95% Cl: 1.02—-1.83). Mortality was higher along the north-south axis,
potentially reflecting disparities in healthcare access and population characteristics. Gender and
final diagnosis were not significant predictors.

Conclusion: Overall, age, length of stay, triage level, ambulance accessibility, and spatial
directionality were significant predictors of in-hospital stroke mortality. The circular statistical
approach provided added value by detecting directional disparities not captured through
conventional methods, underscoring the need for spatially informed interventions to reduce
inequities in stroke outcomes.

Please cite this article as follows: Akbari Sharak N, Najibi M, Shakeri MT. Predictors of In-hospital mortality among stroke patients in
mashhad, iran: a novel circular approach to incorporate spatial component. J Res Health Sci. 2025; 25(1):€00. doi:10.34172/jrhs.11685

Background

medical care, as stroke management requires urgent

Stroke is a serious global health challenge, with its burden
on public health increasing over time.! In addition, it is the
second leading cause of death and disability among adults
worldwide.? Despite its largely preventable nature, nearly
two-thirds of all stroke-related deaths occur in developing
countries.”” In Iran, the in-hospital mortality rate has been
reported to be 18.71% for stroke patients. This mortality
rate increases in 1-month and 1-year periods, thereby
increasing by one-third in a 1-year mortality rate.®
Identifying risk factors for stroke-related mortality is
critical to improving prevention strategies while reducing
its incidence.” One key factor is timely access to advanced

intervention.® Studies have shown that every minute
of delay in treating ischemic stroke results in the loss of
approximately 1.9 million brain cells, emphasizing the
importance of rapid treatment.” While both pre-hospital
and in-hospital delays influence outcomes, pre-hospital
delay, the time from symptom onset to hospital arrival, is
frequently longer and has a greater impact on prognosis.
Emergency medical services (EMS) play a crucial role
in minimizing pre-hospital delays while optimizing
stroke care.'

Moreover, patient residence and accessibility to
healthcare facilities are significant determinants of
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stroke outcomes. Research highlights that neighborhood
characteristics (e.g., environmental and socio-economic
factors) can influence stroke incidence and mortality."
Geographic proximity to hospitals and the distance patients
must travel for treatment are crucial in determining delays
in admission and subsequent outcomes.’*** For instance,
individuals living farther from healthcare facilities are
more likely to experience longer delays, increasing their
risk of poor outcomes.’* These findings underscore the
importance of accounting for spatial and accessibility
factors in health research.

In this context, incorporating spatial information
in stroke research can provide valuable insights into
factors influencing health outcomes. Generally, data
can be categorized into linear and circular types. Linear
data (e.g., income, age, or weight) are commonly
encountered in research. In contrast, circular data arise
when measurements are periodic or directional (e.g.,
time, angles, or compass directions). Circular data are
characterized by their cyclical nature, where the starting
and ending points coincide.'” For example, time measured
on a 24-hour clock can be converted into angular data and
represented as circular, with values expressed in degrees
(0°-360°) or radians (0-2 7).

In addition, circular data are widely used in various
disciplines, including meteorology (e.g., wind directions),
biology (e.g., animal movement), physics (e.g., angular
motion), and medicine (e.g., circadian rhythms).” This
broad applicability underscores the potential of circular
data to provide new insights into spatial aspects of
stroke outcomes, enhancing our understanding of how
directional factors impact health. In this study, a novel
application of circular data in stroke research is introduced
by incorporating patients’ residential locations relative to
the hospital as a circular variable. Specifically, the study
focuses on computing the bearing angle, which represents
the directional relationship between a patient’s residence
and the hospital. By integrating this circular measure with
traditional linear predictors, the study aims to determine
how spatial relationships affect health outcomes, such as
admission delays and mortality.

By treating the bearing angle as a circular covariate, this
study also accounts for directional spatial variability in
stroke outcomes. Specifically, the bearing angle can help
identify whether patients residing in particular directions
relative to the hospital experience different outcomes,
which may be influenced by a number of factors, such
as road infrastructure, traffic patterns, or environmental
barriers that vary by direction.

To investigate these factors, a circular logistic regression
model is applied, which is designed to describe the
relationship between a binary response variable (e.g.,
in-hospital mortality) and circular predictors, alongside
linear predictors. This method allows us to evaluate the
combined effects of spatial and temporal factors on in-
hospital mortality among stroke patients in Mashhad, Iran.

Methods

Study area and data sources

This retrospective cohort study was conducted in Mashhad,
the capital of Razavi Khorasan province in northeastern
Iran. It is the second most populous city in the country,
with an estimated population of approximately 3.8 million
(Statistical Center of Iran). The city operates 79 ambulance
vehicles across 59 stations and has 25 public hospitals
providing medical care.”

The study evaluated patients with stroke symptoms
who were transferred to Ghaem Hospital, a tertiary
neurological referral center in eastern Iran, by the
EMS between April 2018 and March 2019. It should be
noted that this hospital serves as the primary facility for
neurology emergencies in the region.” In this study, all
methods were performed in accordance with relevant
guidelines and regulations, and pre-hospital EMS data
and in-hospital data were collected based on the aim
of the study. Pre-hospital information was obtained
from the EMS system database and included delay time,
response time, transport time, revealed access time,
and patient location. Delay time indicates the interval
between receiving an emergency call and dispatching an
ambulance, and response time is the interval between
receiving the call and ambulance arrival at the scene.
Moreover, transport time implies the duration of patient
transport from the scene to the hospital, and revealed
access time denotes the sum of response and transport
times. Furthermore, patient location demonstrates the
geographic coordinates of the caller’s address.

In-hospital information was retrieved from the
hospital’'s Health Information System and included
patient demographic and clinical details: age and gender,
screening time (hour), triage level, length of stay (LOS) in
the hospital, hypertension diagnosis, final stroke diagnosis
based on ICD-10 codes (163.0 to 163.9 and 169.4), and in-
hospital mortality (the primary study endpoint). Further,
pre-hospital data were linked with in-hospital data using
emergency mission IDs, ensuring a comprehensive
dataset. Additionally, the accessibility rate of ambulances
(number of ambulances per one million inhabitants) for
each district was calculated.

To model spatial relationships, patient residential
addresses at the time of admission were geocoded
to latitude and longitude using Google Maps. These
geographic coordinates were then converted into bearing
angles relative to Ghaem Hospital, representing the
directional spatial relationship between the patient’s
location and the hospital. This transformation allowed us
to incorporate the bearing angle as a circular covariate in
the analysis, thereby enabling the evaluation of how the
directional component of spatial accessibility influences
in-hospital mortality. It is noteworthy that patients residing
outside Mashhad were excluded from the study to ensure
consistency in geographic coverage. Missing data were
minimal, and a complete-case analysis was performed;
records with missing values on any study variable were
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excluded from the analysis.

Statistical analysis
The normality of quantitative variables was assessed using
the Kolmogorov-Smirnov test. Continuous variables
were summarized as means+standard deviations (SD)
or medians with interquartile ranges (IQR), depending
on their distribution. In addition, quantitative variables
were compared using the independent samples t-test
for normally distributed data, and associations between
categorical variables were evaluated using the chi-
square test. The means and SDs of the bearing angle
were calculated using circular statistical methods, and
the Watson-Williams test was applied to compare mean
bearing angles between the two groups.

The circular mean (@) and circular SD were computed
based on the following formulas®:

azAman[Z?lsmm zrlcosm)J

s

n n
where 6, represents each angular observation, and 7 is the

total number of observations.
The circular SD is calculated as:

circular SD = \|-21n (R)

where R denotes the mean resultant length, defined as:

R- [Z:’]sinm)]:[zxcos(a)]Z

n n

For analytical modeling, univariate logistic regression
models were applied to linear variables. Variables with
P <0.20 were then included in the final multiple regression
model.” Subsequently, a logistic regression model for
circular data was employed to identify the risk factors
(linear and circular) associated with in-hospital stroke
mortality.

The logistic regression model for circular data aims
to describe the relationship between a binary response
variable and circular predictors. Consider a binary outcome
variable # € {0,1} that depends on a circular explanatory
variable u € [0,2nt]. The probability of a success, n(f3, u)
is modeled using the binomial circular logistic regression
equation as follows:

_exp{f, + f cosu+ B, sinuf
”('B’u)_l+exp{ﬁ0 + f3, cosu+ B, sinu}

where f=(f0,51,52)" € R*is the model parameter vector.
This formulation incorporates the circular nature of the
predictor. The circular variable u in our model corresponds
exclusively to the spatial bearing angle. In addition, the
circular logistic component models the effect of this spatial
directional variable, while other non-circular predictors
(e.g., age, LOS, and triage level) have been incorporated as
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linear covariates in the full regression model.

For n independent observations divided into I groups,
i=1,2,...,], each containing n, observations (x :Zl‘ln‘).
Moreover, the covariates and the number of successes are
denoted by ui and vi, respectively. Considering that these
observations follow a binomial distribution, the likelihood
function is expressed as*:

1
(o) T1[ ey (-5(pn))

The circular logistic regression model, first proposed
by Al-Daffaie and Khan," is an extension of the classical
logistic regression model for linear data introduced by
Berkson.”

For the fitting of the circular logistic regression model,
the function “glm” from the package “CircStats™ is used
in R software, version 4.0.2.%

To assess global spatial autocorrelation in in-hospital
mortality, Moran’s I was calculated using a hexagonal
lattice constructed from geocoded patient locations.

Results

In this study, 1,171 patients with stroke symptoms were
analyzed, of whom 14.3% (167 patients) experienced in-
hospital mortality. Among the cohort, 587 (50.10%) were
male with a mean age of 69.92+13.61 years, while 584
(49.90%) were female with a mean age of 70.15+13.93
years. The median of LOS was 3 days (IQR=6), and
77.20% (904 patients) were discharged within the first
week of admission. Table 1 provides a summary of
the demographic and EMS characteristics of the study
population.

Based on the results, no significant difference was
observed between males and females in terms of in-
hospital mortality (50.10% vs. 49.9%, P=0.3). A majority
(75.80%) of patients were older than 60 years, and 85.60%
of the deaths occurred within this age group (P=0.001).
Furthermore, delay time (P=0.040) and LOS (P<0.001)
demonstrated  statistically  significant  differences
concerning mortality outcomes. Additionally, mortality
was noticeably associated with triage level (P<0.001)
and final stroke diagnosis (P=0.001). However, the
mean values of other variables, including response time,
transport time, revealed access, ambulance accessibility
rate, and distance to the hospital, did not considerably
differ between patients who survived and those who did
not (P>0.05).

The bearing angle, a circular variable, was analyzed
using circular statistical methods. The mean bearing angle
for the entire cohort was 81.06°+54.93°. When stratified
by mortality, the bearing angles were 81.47° and 80.01°
for survivors and non-survivors, respectively, with no
statistically significant difference between the two groups
based on the Watson-Williams test (P=0.858).

The univariate binary logistic regression analysis
identified several variables significantly associated with in-
hospital mortality among patients with stroke symptoms.
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Table 1. Demographic and clinical characteristics of patients with symptoms of stroke

Total (N=1171) Yes (n=167) No (n=1004)
Categorical Variables P value
Number Percent Number Percent Number Percent
Gender 0.100
Male 587 50.10 74 44.30 513 51.10
Female 584 49.90 93 55.70 491 48.90
Age group (y) 0.001
<60 283 24.20 24 14.40 259 25.80
>60 888 75.80 143 85.60 745 74.20
Residency 0.740
Urban 985 84.10 139 83.20 846 84.30
Suburban 186 15.90 28 16.80 158 15.70
Length of stay 0.001
<7 904 77.20 94 56.30 810 80.70
>7 267 22.80 73 43.70 194 19.30
Triage level 0.001
Levels 1 & 2 809 69.10 143 85.60 666 66.30
Levels 3 & 4 362 30.90 24 14.40 338 33.70
Final stroke diagnosis 0.001
Yes 299 25.50 60 35.90 239 23.80
No 872 74.50 107 64.10 765 76.20
Continuous variables Mean SD Mean SD Mean SD P value
Age, mean+SD 70.00 13.80 73.90 13.70 69.40 13.60 0.001
Accessibility rate of the ambulance (per one million inhabitants) 27.30 6.73 26.4 6.73 27.50 7.10 0.060
Delay time (s) 37.30 29.70 42.70 29.91 36.80 29.71 0.040
Response time (min) 9.00 3.90 9.00 4.10 9.00 3.82 0.970
Transport time (min) 21.50 11.90 22.00 13.90 21.50 11.60 0.120
Revealed access (min) 30.50 13.10 31.00 15.11 30.40 12.82 0.610
Screening time (h) 0.25 0.30 0.20 0.10 0.30 0.31 0.040
Distance to the hospital (km) 5.90 2.90 6.00 2.90 5.90 2.90 0.530
LOS, median (IQR) 3.00 6.00 6.00 10.00 2.00 6.00 0.001

Note. SD: Standard deviation; LOS: Length of stay; IQR: Interquartile range; LOS was summarized using median (IQR).

They included age, final stroke diagnosis, triage level,
screening time, and LOS. Variables with a P value <0.200
in the univariate analysis (e.g., gender, age, final stroke
diagnosis, delay time, triage level, screening time,
ambulance accessibility rate, LOS, and bearing angle) were
subsequently included in the final multivariable logistic
regression model.

The results from the multiple circular logistic regression
model revealed that several variables had a statistically
significant association with in-hospital mortality among
patients with stroke symptoms. They included age
(OR=1.03, 95% CI: 1.01-1.04), LOS (OR=1.03, 95% CI:
1.01-1.04), triage level (OR=2.31, 95% CI: 1.45-3.69),
accessibility rate of ambulances (OR=0.97, 95% CI: 0.95-
0.99), and the sine of the bearing angle (OR=1.37, 95%
CIL: 1.02-1.86).

After adjusting for other variables in the model, age was
positively associated with in-hospital mortality, with the
odds increasing by 3% for each additional year. Similarly,
LOS was positively associated with in-hospital mortality,

with the odds increasing by 3% for each additional
day of hospital stay. In addition, triage level showed a
strong positive association, with patients assigned higher
triage levels having 2.31 times the odds of in-hospital
mortality compared to those with lower triage levels. The
accessibility rate of ambulances was negatively associated
with in-hospital mortality, as the odds decreased by 2% for
each unit increase in the accessibility rate of ambulances
per one million residents.

Other variables, including gender, delay time, and final
stroke diagnosis, represented no statistically significant
associations with in-hospital mortality (P> 0.05, Table 2).

The hexagon-level aggregation of in-hospital mortality
demonstrated a significant positive spatial autocorrelation
(Moran’s 1=0.30; Z=12.87; P<0.001), indicating that
mortality outcomes were spatially clustered rather than
randomly distributed across Mashhad. This supports
the presence of underlying geographical patterns and
is consistent with the directional north-south variation
identified through circular regression.
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Table 2. Determining risk factors associated with in-hospital mortality in
patients with symptoms of stroke using the circular logistic regression model

Variables (Reference) OR (95% CI) P value
Male/female 1.23 (0.87, 1.74) 0.234
Age (year) 1.03 (1.01, 1.04) 0.001
Final stroke diagnosis (Yes/No) 1.41 (0.97, 2.04) 0.072
Triage level (3 & 4/1 & 2) 2.31(1.45,3.69) 0.001
Delay time (s) 1.00 (0.99, 1.01) 0.300
Screening time (h) 0.26 (0.06, 1.09) 0.067
LOS 1.03 (1.01, 1.04) 0.001
Sin (bearing angle) 1.37 (1.02, 1.86) 0.039
Cos (bearing angle) 1.17 (0.92, 1.49) 0.202

Note. OR: Odds ratio; Cl: Confidence interval; LOS: Length of stay.

Discussion

Using circular statistical methods, this study assessed
whether the directional distribution of patients relative
to the hospital was associated with in-hospital mortality.
The use of bearing angles provided a novel approach to
capturing spatial directionality, thereby complementing
conventional geographic analyses. The finding that the
sine component of the bearing angle was significantly
associated with mortality suggests a directional gradient
along the North-South axis. Such asymmetry may reflect
underlying differences between northern and southern
areas of Mashhad, including variations in healthcare
accessibility, EMS coverage, population density, or
sociodemographic  characteristics. ~ While  circular
regression identifies the directional dimension of this
disparity, the observed spatial clustering in the Moran’s
I analysis further supports the presence of underlying
geographical structures in mortality risk.

In this study, the in-hospital stroke mortality rate
was 14.30%, which is higher than that reported in some
previous studies,”>*** likely due to the high proportion
of elderly patients (75.80% over 60 years old). However,
it was lower than rates observed in other studies.”®!
Moreover, age emerged as a critical independent predictor
of mortality, with each additional year increasing the odds
of death by 3%. This finding aligns with that of previous
research, highlighting the strong association between
advanced age and stroke mortality.’>**

Additionally, the median LOS was three days, with
22.80% of patients hospitalized for over one week. Longer
LOS significantly increased the odds of mortality, with
a 2% increase for each additional day of hospitalization.
These findings are consistent with the results of some
other studies, demonstrating that prolonged hospital stays
correlate with higher mortality risk.*”

Ambulance accessibility also played a pivotal role in
patient outcomes. In Mashhad, the mean ambulance
accessibility rate was 27 ambulances per one million
residents in 2018.2* Higher accessibility rates were inversely
associated with mortality, highlighting the importance of

Circular analysis of stroke mortality predictors

timely EMS interventions. Previous studies indicated that
increased EMS accessibility improves the likelihood of
receiving thrombolytic therapy while reducing key time
intervals, such as emergency physician response time and
neurologist evaluation time.***

Thedirectional effect observed in this study complements
earlier spatial analyses in Mashhad, such as auto-logistic
regression models identifying elevated stroke mortality
in suburban and northeastern neighborhoods with
socioeconomic disadvantages.”' In general, these findings
confirm the role of geographic and social determinants
in shaping stroke outcomes, underscoring the need for
targeted interventions to improve EMS distribution and
healthcare access in underserved regions.

While both studies highlight the spatial determinants of
mortality, our analysis uniquely leverages circular statistics
to identify directional trends, offering a complementary
perspective  to  neighborhood-level
findings. Overall, these results emphasize the need for
targeted healthcare interventions in socioeconomically
disadvantaged areas and improved EMS accessibility in
underserved regions.

Likewise, our findings underline the critical need for
equitable healthcare resource allocation. Policymakers
should prioritize improving EMS station distribution
and healthcare accessibility, particularly in northern and
southern areas of Mashhad, to address observed disparities.

This study had several limitations. It was based on
a single year of registry data, limiting the ability to
assess temporal trends. In addition, the registry lacked
variables such as stroke subtype, severity, comorbidities,
and hospital discharge policies, which could influence
outcomes. Additionally, operational factors (e.g., hospital
crowding, EMS workload, and traffic conditions) were
unavailable and could not be incorporated, possibly
resulting in residual confounding. Accordingly, future
studies incorporating real-time EMS and environmental
data may provide a more comprehensive understanding of
geographic influences on mortality.

autocovariate

Conclusion

In summary, the findings identified age, length of
hospital stays, and ambulance accessibility as significant
predictors of in-hospital stroke mortality in Mashhad.
Importantly, the use of circular statistical methods
introduced a novel way to capture directional disparities,
revealing a North-South gradient in mortality that
complements conventional spatial approaches. This
methodological advancement highlights the potential
of circular statistics to enhance spatial health research
by identifying patterns that may otherwise remain
undetected. Nevertheless, these findings are based on
single-center, single-year registry data and should be
interpreted with caution accordingly. Future research
with larger, multi-year, and multicenter datasets, as well
as inclusion of additional clinical covariates, is warranted
to validate and extend these results.

J Res Health Sci. 2026;26(2) | 5



Akbari Sharak et al

Highlights

o  Circular statistics were applied to assess directional
predictors of stroke mortality.

o In-hospital stroke mortality rate was 14.3% among
1,171 emergency medical service-transported
patients.

o Age, length of stay, triage level, and ambulance
access predicted mortality risk.

o A significant north-south direction effect indicated
spatial healthcare disparities.

o  Circular analysis revealed spatial trends that were
undetectable by conventional methods.
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