
Background
Under-five mortality is a crucial indicator used to assess 
the health status of a country and its people.1 As defined 
by the World Health Organization, under-five mortality 
refers to the total number of deaths of children that occur 
within the first five years of life per 1000 live births.2 It 
is a key measure of progress for sustainable development 
goals (SDGs). SDG 3.2 aims to eliminate avoidable deaths 
of children under the age of five and reduce the under-
five mortality rate (U5MR) to 25 per 1000 live births 
or less in all countries by 2030.3 Worldwide, the overall 
number of deaths among children under the age of 5 
has decreased from 12.8 million in 1990 to 4.9 million in 
2022. The global U5MR has reduced by 61% since 1990, 
declining from 94 deaths per 1000 live births in 1990 to 

37 in 2023.4 Nonetheless, the burden of this tragic death 
toll falls heavily on families in sub-Saharan Africa and 
Southern Asia, especially in low-income and lower-
middle-income nations. Although only three out of five 
live births occur in these regions, they account for four 
out of five deaths among children under five. Southern 
Asia alone contributes to 26% of the world’s U5MR.5 
Newborn infections, congenital impairments, premature 
birth, malaria, pneumonia, sepsis, measles, delivery 
complications, and diarrhoea are all well-established 
preventable factors leading to death in children under 
the age of five.6,7 In India, under-five mortality has been 
a significant health concern, with 109 deaths per 1000 live 
births in 1992–1993, declining to 41.9 per 1000 live births 
in 2019–2021, according to the National Family Health 
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Abstract
Background: Each year, millions of children under five die globally, with many of these deaths 
being preventable. The situation is particularly concerning in low sociodemographic index 
(LSDI) states of India, where the under-five mortality rate is 45 children per 1000 live births. This 
study aimed to predict under-five mortality and determine related key factors.
Study Design: A cross-sectional study.
Methods: This study analyzed National Family Health Survey-5 (NFHS-5) data related to 
94,202 children from the LSDI states of India. Several survival models were tested, including 
Cox proportional hazards, random survival forest, and gradient-boosted survival, to identify 
factors linked to child mortality. Model performance was evaluated using metrics such as the 
concordance index, integrated Brier score, and time-dependent receiver operating characteristic 
(ROC) curves.
Results: Among the studied children, 4.5% (4,284) died before their fifth birthday. The risk of 
death was higher in children born to younger (15–25 years) mothers (hazard ratio [HR] = 1.113, 
95% confidence interval (CI): 1.034, 1.198; P < 0.001), uneducated mothers (HR = 1.263, 95% 
CI: 1.098–1.454; P < 0.0001), mothers with a poorer wealth index (HR = 1.719, 95% CI: 1.475–
2.003; P < 0.0001), and children with low birth weight (HR = 2.091, 95% CI: 1.934–2.26; P < 
0.001). The random survival forest model outperformed in identifying these risk factors.
Conclusion: This study highlights the importance of empowering women through education, 
improving family planning, addressing poverty, and providing equitable healthcare to reduce 
child mortality. These insights can help shape policies and initiatives to improve the survival and 
health of children in vulnerable communities.
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Survey (NFHS).8,9 However, in low sociodemographic 
index (LSDI) states (i.e., Uttar Pradesh, Bihar, Rajasthan, 
Madhya Pradesh, Chhattisgarh, and Jharkhand), the 
U5MR remains higher than the national average, at 
approximately 45 deaths per 1000 live births. These states 
require targeted interventions to identify and address the 
underlying factors contributing to child mortality. 

Over the past few decades, data analysts have relied 
on various survival analysis methods, including Cox 
regression and parametric regression models, to study 
survival data. While these models are straightforward 
and offer good interpretability, medical data often involve 
complex, multidimensional, and non-linear relationships. 
As a result, traditional statistical techniques may not be 
sufficient for accurately predicting child mortality. To 
address this challenge, survival machine-learning (ML) 
techniques have emerged as a powerful alternative, 
demonstrating superior performance in handling non-
linear and complex datasets.

Multiple studies have evaluated classification ML 
algorithms in predicting child mortality and other 
outcomes of various diseases against other prediction 
models, and survival ML models have been employed to 
predict cancer outcomes. To the best of our knowledge, 
no research has so far been undertaken to predict child 
mortality utilizing survival ML algorithms. Thus, this study 
aims to compare various survival analysis techniques, 
ranging from traditional statistical models to state-of-
the-art ML algorithms, in predicting child mortality and 
determining factors affecting it.

Methods
This study utilized unit-level data obtained from the 
NFHS conducted from 2019 to 2021. It was a cross-
sectional, large-scale, multi-round survey performed 
in a representative sample of households throughout 
India. It is a comprehensive demographic and health 
study covering all 707 districts of India. In this study, the 
LSDI states of India with 248 districts were taken into 
consideration. It comprised 104 692 samples at the time 
of the survey, and the analysis was conducted on 94 202 
samples after removing missing values from one or more 
variables under consideration.

Sociodemographic index
It was calculated by taking the geometric mean of 
education attainment, the total fertility rate of the region 
or country, and per capita income, developed by Global 
Burden of Disease (GBD) researchers. It serves as a tool 
to gauge the level of economic and social development 
in a country or region. The SDI is represented on a scale 
ranging from 0 to 1.10 The SDI 2019 value quantiles are 
used to categorize regions. According to their SDI 2019 
values, Uttar Pradesh, Bihar, Rajasthan, Madhya Pradesh, 
Chhattisgarh, and Jharkhand are classified as LSDI states. 

Study Variables
Binary (1 if a live-born child dies before its fifth birthday; 
0 otherwise) was the dependent variable. Additionally, 
the time in months until the event (death) occurred. 
Independent variables (N = 11) included the age of the 
mother (15–25, 26–35, and 36–49 years), educational level 
of the mother (no education, primary, secondary, and 
higher), social caste (scheduled caste [SC], scheduled tribe 
[ST], other backward castes [OBC], and other castes), 
wealth index (poorest, poorer, middle, richer, and richest), 
and mother’s body mass index (BMI; underweight, 
normal weight, overweight, and obese). Moreover, other 
independent variables were the gender of the child (male 
or female), birth order of the child (first order, second 
order, third order, and four or more birth orders), size of 
the child at birth (larger than average, average, and smaller 
than average), and birth weight (yes if it was less than 2.5 
kg or no if it was 2.5 kg or more). Further, a separate 
category was created for unknown or unmeasured birth 
weights, and another category was used to investigate 
whether the child was immediately placed on the mother’s 
chest after birth (recorded with yes or no).

Statistical analysis
Descriptive statistics (numbers and percentages) were 
reported for categorical variables, and the thematic map 
was prepared to depict the district-wise U5MR. These 248 
districts were categorized into 3 groups based on U5MR. 
The first group encompassed districts that attained the 
SGD 3.2 goal, aiming at reducing under-5 mortality to at 
least as low as 25 per 1,000 live births (U5MR ≤ 25). The 
second group contained districts with U5MR between 
SGD 3.2 and the national average ( > 25 to 41.9), and 
districts with U5MR more than the national average ( > 
41.9) included the third category. Furthermore, univariate 
and multivariate Cox proportional hazard (CoxPH) 
regressions were applied to assess the potential features. 
Six algorithms were applied for training, including two 
conventional survival models (CoxPH regression and 
CoxNet PH) and four models from the ML paradigm 
(random survival forest [RSF], gradient boosting survival 
[GBS], component gradient boosting survival [CGBS], 
and survival tree [SurvTree]). In addition, random forest 
(RF) permuted feature importance was employed to 
identify important features. The data were split into a 
70:30 ratio, with 70% utilized to train the model and the 
remaining 30% for testing. The model was trained using 
the training set, and its performance was assessed on the 
test set to measure generalization.

One of the widely used methods in survival analysis 
is the CoxPH regression.11 This model estimates the 
hazard rate (HR) for an event as a linear combination 
of the effects of various covariates. While this model is 
popular due to its simplicity and ease of interpretation, 
its parametric structure limits its ability to capture non-
linear relationships or interactions between covariates.12 
The CoxPH model, regularized by a convex combination 
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of l1(lasso) and l2(ridge) penalties, is known as the CoxNet 
regression model.13

RSF14 is an extension of RF designed to handle right-
censored survival data. It follows the general principles of 
RF, where SurvTrees are grown using bootstrapped data, 
random feature selection is employed for splitting nodes, 
trees are grown deeply, and the survival forest ensemble 
is constructed by averaging terminal node statistics. A 
gradient-boosted model shares similarities with an RSF in 
that both utilize multiple base learners to generate overall 
predictions. However, they differ in their approach to 
combining these learners. While RSF independently fits 
a collection of SurvTrees and averages their predictions, 
gradient-boosted models build learners sequentially in a 
greedy, stagewise manner. The GBS15,16 model implements 
gradient boosting survival learner, whereas CGBS analysis 
uses component-wise least squares as a base learner. 
The survival tree model is a nonparametric approach 
designed to identify factors influencing the time until the 
occurrence of a specific event. The log-rank splitting rule 
is employed to assess the quality of a split.17 These models 
are particularly suitable for survival analysis because they 
can effectively handle censored data and estimate time-
to-event outcomes. While the CoxPH model provides an 
interpretable parametric approach, tree-based models, 
such as RSF and gradient boosting methods, capture 
complex, non-linear relationships, improving predictive 
accuracy.

The goodness-of-fit and model calibration of the fitted 
models were evaluated using the concordance index 
(C-index)18,19 and the integrated Brier score (IBS),20 
respectively. Additionally, the time-dependent receiver 
operating characteristic (ROC) curve21 was used to assess 
the predictive performance of the models.

Statistical analysis was performed using the trial version 
of Statistical Package for Social Sciences (SPSS) software 
(version 26; IBM Inc., Chicago, IL), GeoDa 1.20, R 
package (forester, version 0.3.0),22 and Python package 
(scikit-survival, version 0.23.1).23

Results
Among 94 202 children under the age of five in the 
dataset, 4284 (4.5%) were reported dead. The mothers of 
44.1%, 50.2%, and 5.7% of children were in age groups of 
15–25 years, 26–35 years, and 36–49 years, respectively. 
Moreover, 43.6% of mothers had secondary education, 
while 31.5% had no schooling at all. Further, 23% and 
14.7% of children belonged to SCs and STs, respectively. 
A total of 33 952 (36%) children were from the poorest 
households, 23 602 (25.1%) were from poorer families, and 
15 787 (16.8%) belonged to middle-income households. 
Overall, 12 338 (13.1%) children had mothers whose height 
was less than 4.9 feet. Regarding gender distribution, 
52% were male, and 48% were female. Concerning birth 
order, 33.5%, 30.7%, and 17.6% of children were first-
born, second-born, and fourth-born or later, respectively. 
A majority (72.6%) of children at birth were of average 

length, while 16.8% and 10.6% were classified as larger 
than average and smaller than average, respectively. A 
significant percentage (81.7%) of children had been placed 
on their mother’s chest immediately post-birth, whereas 
18.3% were not (Table 1). 

Figure 1 presents the U5MR per 1000 children across 
the districts of LSDI states in India. The median U5MR 
was 43.6 (the interquartile range: 33.25–55.32). Among the 
248 districts, 32 had a U5MR below 25 per 1000, and these 
districts were scattered across the states. The U5MR in 85 
districts ranged between 25.1 and 41.9, with the majority 
of these districts located in Rajasthan, Madhya Pradesh, 
Chhattisgarh, and parts of Bihar and Uttar Pradesh. A 
large number of districts (130) had a U5MR higher than 
the national average, with most of these districts situated 
in Uttar Pradesh, Bihar, Chhattisgarh, Madhya Pradesh, 
and parts of Rajasthan and Jharkhand.

Figure 2 shows the several significant factors associated 
with under-five mortality. Mothers aged 15–25 years had a 
higher risk of child mortality (HR = 1.113, 95% confidence 
interval [CI]: 1.034–1.198; P < 0.0001) compared to 
those aged 26–35 years. Lower educational status was 
also associated with higher child mortality risk. Mothers 
with no education (HR = 1.263, 95% CI: 1.098–1.454; P < 
0.0001), primary education (HR = 1.239, 95% CI: 1.069–
1.437, P = 0.005), and secondary education (HR = 1.209, 
95% CI: 1.061–1.376; P < 0.0001) had elevated hazards 
compared to those with higher education. Caste and 
economic status significantly influenced child mortality. 
Children from SC (HR = 1.159, 95% CI: 1.057–1.271; P < 
0.0001), ST (HR = 1.127, 95% CI: 1.046–1.214; P < 0.0001), 
and OBC (HR = 1.127, 95% CI: 1.046–1.214; P < 0.0001) 
faced higher risks.

The risk of child mortality decreased with an increase in 
the wealth index. Children from the poorest households 
had the highest HR (HR = 1.719, 95% CI: 1.475–2.003; 
P < 0.0001), followed by poorer (HR = 1.637, 95% CI: 
1.407–1.904; P < 0.0001) and s-income (HR = 1.569, 95% 
CI: 1.344–1.832; P < 0.0001) households. Overweight (HR 
= 1.342, 95% CI: 1.217–1.480; P < 0.0001) and obesity 
(HR = 1.447, 95% CI: 1.212–1.728; P < 0.0001) among 
mothers increased the risks of child mortality compared 
to those mothers with normal BMI. Second-born (HR = 
0.752, 95% CI: 0.694–0.816; P < 0.0001) and third-born 
(HR = 0.831, 95% CI: 0.754–0.915; P < 0.0001) children 
faced lower risks of mortality compared to first-born 
children. Other significant findings included higher risks 
for male children (HR = 1.157, 95% CI: 1.090–1.229; P < 
0.0001), children with low birth weight (HR = 2.091, 95% 
CI: 1.934–2.26; P < 0.0001), and children not immediately 
placed on their mother’s chest after birth (HR = 2.221, 
95% CI: 2.083–2.368; P < 0.0001).

RF permutation feature importance revealed that birth 
weight (not known/not weighted), lack of putting the 
child immediately on the chest after birth, birth weight 
less than 2.5 kg, birth order, and male gender were the 
top five features, followed by mother’s shorter height 
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( < 4.9 feet), mother’s BMI, lack of mother’s education, 
15–25-year-old age group (of mothers), and poorer wealth 
index (Figure 3). 

In the ML performance matrix, the RSF model emerged 
as the top performer, achieving the highest C-index 
(0.6857) and area under the curve (AUC, 0.7125 ± 0.0189) 
alongside a well-calibrated IBS score of 0.0432, reflecting 
strong accuracy and reliability. The CoxPH and CoxNetPH 
models showed comparable performance with C-index 
scores of 0.6844 and 0.6842, IBS of 0.0430, and similar 
AUCs around 0.708, making them solid alternatives 
to RSF. The GBS model had moderate results, with a 
C-index of 0.6629 and AUC of 0.6996, while maintaining 
an acceptable IBS of 0.0435. On the lower end, SurvTree’s 
C-index of 0.6669 and AUC of 0.5406 indicated weaker 
classification abilities, though its calibration (IBS 0.0433) 
remained reasonable. Finally, the CGBS model was the 
least effective, with a C-index of 0.5787 and a low AUC of 
0.5895 (Table 2).

Time-dependence AUC demonstrated that RSF 
performs slightly better on average, particularly in the first 
20 months of life of children. Beyond 20 months, RSF’s 
advantage diminished, showing a decline in performance 
similar to that of the other models. The CoxPH and 
CoxNetPH models represented stable performance across 
different age groups, which is reflected in their similar 
average AUC scores. However, survival tree performance 
decreased in the first 10 months of the child’s age, and 
then it remained constant after 10 months. On the other 
hand, the GBS and CGBD models reduced, indicating a 
steady decline in predictive accuracy across all age ranges 
(Figure 4).

Table 1. Socioeconomic, demographic, and maternal healthcare variables 
determining under-five child mortality in low SDI states of India, NFHS-5 
(2019-2021)

Variables Frequency Percent 

Age group (years)

15-25 41 519 44.1

26-35 47 327 50.2

36-49 5356 5.7

The mother’s highest level of education

No education 29 675 31.5

Primary 13 338 14.2

Secondary 41 062 43.6

Higher 10 127 10.8

Caste

Schedule caste 21 675 23

Schedule tribe 13 819 14.7

Other backword caste 45 734 48.5

Others 12 974 13.8

Wealth index combined

Poorest 33 952 36

Poorer 23 602 25.1

Middle 15 787 16.8

Richer 12 099 12.8

Richest 8762 9.3

Mother’s height ( < 4.9 feet)

No 81 864 86.9

Yes 12 338 13.1

Mothers’ body mass index (kg/m2)

Underweight 20 788 22.1

Normal weight 61 843 65.6

Overweight 9280 9.9

Obese 2291 2.4

Gender of the child

Male 49 027 52

Female 45 175 48

Birth order

1 31 529 33.5

2 28 884 30.7

3 17 215 18.3

4 or more 16 574 17.6

Size of the child at birth

Very large/larger than average 15 841 16.8

Average 68 376 72.6

Very small/smaller than average 9985 10.6

Birth weight ( < 2.5 kg)

No 67 332 71.5

Yes 15 558 16.5

Not weighted don’t know 11 312 12

No 17 236 18.3

Yes 76 966 81.7

Note. SDI: Sociodemographic index; NFHS-5: National Family Health Survey-5.

Figure 1. Spatial Distribution of Under-Five Mortality Rates by Districts of 
Low SDI States of India, NFHS-5 2019-2021. Note. SDI: Sociodemographic 
index; NFHS-5: National Family Health Survey-5
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Discussion
The study investigated the under-five child mortality 
based on NFHS-5 data of LSDI states of India. The 
analysis identified key factors associated with U5MR and 
developed the predicting models using the traditional 
statistical approach and survival ML techniques. These 
methods provided a comprehensive understanding of the 
determinants of U5MR and demonstrated the potential 
of advanced ML techniques in predicting U5MR. The 
thematic map revealed significant disparities in mortality 

rates across districts within LSDI states of India.
In general, 130 out of the 248 districts exhibited U5MR 

above the national average, highlighting the pressing need 
for targeted interventions in these high-burden districts 
to address the underlying determinants of child mortality. 
When compared to the SDG-3, aimed at decreasing 
the U5MR to 25 per 1000 live births by 2030, merely 33 
districts achieved this target. These districts are scattered 
across the LSDI states; however, a coagulated pattern was 
observed in Rajasthan and Chhattisgarh. In Rajasthan, 

Figure 2. Results of the cox proportional hazard analysis highlighting factors linked to under-five mortality in India, NFHS-5 (2019–2021). Note. NFHS-5: 
National Family Health Survey-5; OBC: Other Backward Classes; SC: Scheduled caste; ST: Scheduled tribe; HR: Hazard rate; CI: Confidence interval; U5MR: 
Under-five mortality rate
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most of these districts were concentrated in the Marwar 
region, including Barmer, Pali, Nagaur, and Jalore, 
corresponding districts of Gujarat—India’s economically 
leading state. In contrast, in Chhattisgarh, the districts 
meeting the target were concentrated around the capital 
region, including Raipur, Durg, Bilaspur, Dhamtari, and 
Bemetara. Meanwhile, 85 districts represented mortality 
rates that, although lower than the national level, remained 
above the SDG-3 benchmark. These findings underscore 
the uneven progress made toward achieving SDG-3 within 
the LSDI states.

Based on the RF permutation feature importance, low 
birth weight, lack of putting the child immediately on the 
breast after birth, birth order, poorest wealth index, male 

gender, maternal short stature, mother’s BMI, and lack 
of mother’s education were identified as important risk 
factors associated with child mortality. These results are 
in line with those of similar studies that utilized RF feature 
importance.24-26

This study is one of the initial attempts to predict 
under-five child mortality using survival ML models. 
According to these models, the predictive analysis, the RSF 
demonstrates the highest C-index and time-dependent 
AUC, indicating strong discriminative ability. Its well-
calibrated IBS of 0.0432 further supports its reliability in 
survival prediction. This performance underscores the 
robustness of RSF in handling complex survival data with 
non-linear and nonparametric relationships. The results 
conform to the findings of other studies predicting U5MR 
using ML classification models.26,27 CoxPH and CoxNetPH 
models had comparable C-index values (~0.684) with 
RSF and slightly lower AUCs (~0.708), demonstrating 
stable performance across different time intervals and age 
groups of children. These models are viable alternatives 
to RSF, offering consistent reliability over time. The GBS 
model showed moderate performance, while SurvTree 
achieved reasonable calibration (IBS of 0.0433) despite 
weaker classification ability. The CGBS model had the 
lowest C-index (0.5787) and AUC (0.5895), representing 
limited utility.

RSF had a slight edge in the first 20 months in the 

Figure 3. Permutation feature importance results obtained with the random forest classifier. Note. BMI: Body mass index

Table 2. Model performance metrics based on the test dataset 

Models C-Index IBS AUC Mean AUC SD

CoxPH 0.6844 0.0430 0.7079 0.0163

CoxNetPH 0.6842 0.0430 0.7080 0.0163

Random survival forest 0.6857 0.0432 0.7125 0.0189

Gradient boosted survival 0.6629 0.0435 0.6996 0.0193

SurvTree 0.6669 0.0433 0.5406 0.0125

Componentwise gradient 
boosted survival

0.5787 0.0439 0.5895 0.0105

Note. C-index: Concordance index; IBS: Integrated Brier score; AUC: Area 
under the curve; SD: Standard deviation; CoxPH: Cox proportional hazard; 
SurvTree: Survival tree; CoxNetPH: Cox Net proportional hazard
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time-dependent AUC-ROC curve, but its performance 
declined thereafter, aligning with other models. CoxPH 
and CoxNetPH remained stable across all age intervals, 
emphasizing their long-term reliability. In contrast, 
SurvTree revealed an initial decline but stabilization 
after 10 months. GBS and CGBS experienced a steady 
performance drop across all time frames. These results 
suggest that RSF is best suited for short-term to medium-
term predictions, while Cox-based models excel in long-
term stability, highlighting the importance of selecting 
models based on specific temporal and data characteristics.

In a study using the CoxPH ratio model, it was found 
that several demographic, socio-economic, and maternal 
characteristics significantly impact the death rate of 
children in the first five years of life. The multivariate 
analysis confirmed that the risk of under-five mortality in 
male children was higher than in female children, which 
corroborates the finding of similar research conducted on 
NFHS-4.28 Maternal age is an essential factor in predicting 
child mortality. The health of a younger mother’s first child 
is negatively impacted by her biological and social factors. 
A child born to young mothers suffers adverse health 
outcomes and has an elevated risk of mortality before the 
age of five.29 A decrease in the risk of under-five mortality 
among children of mothers with primary education, in 
contrast to those of mothers without formal education, 
indicates that enhancing maternal education may lead to 
improved child survival outcomes.30 This expectation arises 
from the documented benefits of women’s educational 
advancements, which positively impact themselves, their 
children, and society as a whole.26,31 Educated mothers 
are more inclined to adopt effective health-seeking 
behaviour for themselves and their children, particularly 
in the utilization of health services, as well as in feeding 
and childcare practices. This, in turn, leads to improved 
health outcomes for both mothers and their children.32 
The results of this study showed a negative HR between 

a family’s economic status and U5MR. Poor families 
experience higher rates of under-five mortality compared 
to wealthy families. This discrepancy may arise from 
various factors. Poor families face challenges in affording 
necessary maternal care and providing adequate nutrition 
to the mother and the child. Lack of awareness regarding 
overall maternal and child health care adds to these 
problems.33,34 Based on the findings of this study, the risk 
of mortality was higher among children from SC and ST 
communities in comparison to those from OBC and other 
castes.33 This could be due to inadequate postnatal care and 
the challenges associated with socioeconomic and cultural 
factors.35 The results of this study also demonstrated that 
children born with low birth weight were at a higher risk 
of dying before reaching the age of five compared to those 
with normal birth weight. A plausible reason for this 
could be the complications associated with preterm births. 
Preterm infants are more vulnerable to conditions such as 
sepsis, a leading cause of neonatal deaths, as well as other 
health issues such as neonatal jaundice and apnea. These 
complications collectively contribute to the increased 
likelihood of under-five mortality in low-birth-weight 
children.36 Children who are smaller than the average size 
at birth face a higher risk of mortality in comparison to 
those born with an average size. The findings of this study 
indicated that children born smaller than the average 
size at birth face a higher risk of mortality. Smaller-
than-average newborns are more prone to malnutrition 
(stunting, wasting, and underweight) compared to those 
born with an average size.37 Babies not placed on their 
mother’s chest immediately after birth face a higher risk of 
mortality, with an HR of 2.207. Early skin-to-skin contact 
promotes breastfeeding, providing essential nutrients 
and antibodies that protect against infections, better 
cognitive development, and strengthen maternal bonding. 
It also helps regulate the baby’s temperature, reduces 
stress, and enhances maternal satisfaction, emphasizing 

Figure 4. Time dependence AUC of various included models in the study. Note. CoxPH: Cox proportional hazard; CoxNetPH: Cox Net proportional hazard; 
AUC: Area under the curve; RSF: Random survival forest; GBS: Gradient boosted survival; SurvTree: Survival tree; CGBD: Component gradient boosting survival.



J Res Health Sci. 2025;25(3)8

Vishwakarma et al 

the importance of early breastfeeding to save lives and 
improve well-being.38

The study had several strengths. For instance, it is 
based on national-level data collected using validated 
questionnaires and methodologies. Moreover, this study, 
to the best of our knowledge, is one of the first attempts 
to predict under-five child mortality using survival ML 
models. However, the study had certain limitations. 
Considering that this study focused only on LSDI states of 
India, the performance of the models may exhibit variability 
when applied to different datasets. As a result, the findings 
may not be directly generalizable to other datasets. In this 
study, the model’s performances were measured on test 
data. Cross-validation was not performed. Additionally, 
the lack of data on the specific causes of child deaths 
limited our ability to evaluate unavoidable fatalities and 
their impact on the study’s outcomes.

Conclusion
This study compared the performance of advanced 
survival ML models in predicting under-five child 
mortality. The CoxPH model identified significant 
predictors in this regard, including younger maternal 
age, maternal education level, religion, wealth index, 
maternal height, child’s gender, birth order, and maternal 
BMI. Accordingly, the government must reinforce its 
commitment to reforming education and communication 
(IEC) initiatives currently being implemented as part of 
the Reproductive, Maternal, Neonatal, Child, Adolescent 
Health plus Nutrition package in the country, with a 
renewed commitment to higher budgetary allocation to 
Reproductive, Child, and Health Services to holistically 
tackle under-five mortality.
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